#include "AnimationManager.hpp" #include "../Compositor.hpp" void CAnimationManager::tick() { bool animationsDisabled = false; if (!g_pConfigManager->getInt("animations:enabled")) animationsDisabled = true; const float ANIMSPEED = g_pConfigManager->getFloat("animations:speed"); const auto BORDERSIZE = g_pConfigManager->getInt("general:border_size"); for (auto& av : m_lAnimatedVariables) { // first, we check if it's disabled, if so, warp if (av->m_pEnabled == 0 || animationsDisabled) { av->warp(); continue; } // get speed const auto SPEED = *av->m_pSpeed == 0 ? ANIMSPEED : *av->m_pSpeed; // window stuff const auto PWINDOW = (CWindow*)av->m_pWindow; bool needsDamage = false; wlr_box WLRBOXPREV = {PWINDOW->m_vRealPosition.vec().x - BORDERSIZE - 1, PWINDOW->m_vRealPosition.vec().y - BORDERSIZE - 1, PWINDOW->m_vRealSize.vec().x + 2 * BORDERSIZE + 2, PWINDOW->m_vRealSize.vec().y + 2 * BORDERSIZE + 2}; // TODO: curves // parabolic with a switch unforto // TODO: maybe do something cleaner switch (av->m_eVarType) { case AVARTYPE_FLOAT: { if (!deltazero(av->m_fValue, av->m_fGoal)) { if (deltaSmallToFlip(av->m_fValue, av->m_fGoal)) { av->warp(); } else { av->m_fValue = parabolic(av->m_fValue, av->m_fGoal, SPEED); } needsDamage = true; } break; } case AVARTYPE_VECTOR: { if (!deltazero(av->m_vValue, av->m_vGoal)) { if (deltaSmallToFlip(av->m_vValue, av->m_vGoal)) { av->warp(); } else { av->m_vValue.x = parabolic(av->m_vValue.x, av->m_vGoal.x, SPEED); av->m_vValue.y = parabolic(av->m_vValue.y, av->m_vGoal.y, SPEED); } needsDamage = true; } break; } case AVARTYPE_COLOR: { if (!deltazero(av->m_cValue, av->m_cGoal)) { if (deltaSmallToFlip(av->m_cValue, av->m_cGoal)) { av->warp(); } else { av->m_cValue = parabolic(SPEED, av->m_cValue, av->m_cGoal); } needsDamage = true; } break; } default: { ; } } // invalidate the window if (needsDamage) { g_pHyprRenderer->damageBox(&WLRBOXPREV); g_pHyprRenderer->damageWindow(PWINDOW); } } } bool CAnimationManager::deltaSmallToFlip(const Vector2D& a, const Vector2D& b) { return std::abs(a.x - b.x) < 0.5f && std::abs(a.y - b.y) < 0.5f; } bool CAnimationManager::deltaSmallToFlip(const CColor& a, const CColor& b) { return std::abs(a.r - b.r) < 0.5f && std::abs(a.g - b.g) < 0.5f && std::abs(a.b - b.b) < 0.5f && std::abs(a.a - b.a) < 0.5f; } bool CAnimationManager::deltaSmallToFlip(const float& a, const float& b) { return std::abs(a - b) < 0.5f; } bool CAnimationManager::deltazero(const Vector2D& a, const Vector2D& b) { return a.x == b.x && a.y == b.y; } bool CAnimationManager::deltazero(const float& a, const float& b) { return a == b; } bool CAnimationManager::deltazero(const CColor& a, const CColor& b) { return a.r == b.r && a.g == b.g && a.b == b.b && a.a == b.a; } double CAnimationManager::parabolic(const double from, const double to, const double incline) { return from + ((to - from) / incline); } CColor CAnimationManager::parabolic(const double incline, const CColor& from, const CColor& to) { CColor newColor; newColor.r = parabolic(from.r, to.r, incline); newColor.g = parabolic(from.g, to.g, incline); newColor.b = parabolic(from.b, to.b, incline); newColor.a = parabolic(from.a, to.a, incline); return newColor; }