#include "BezierCurve.hpp" void CBezierCurve::setup(std::vector* pVec) { m_dPoints.clear(); m_dPoints.emplace_back(Vector2D(0,0)); for (auto& p : *pVec) { m_dPoints.push_back(p); } m_dPoints.emplace_back(Vector2D(1,1)); RASSERT(m_dPoints.size() == 4, "CBezierCurve only supports cubic beziers! (points num: %i)", m_dPoints.size()); // bake 100 points for faster lookups // T -> X ( / 100 ) for (int i = 0; i < 100; ++i) { m_aPointsBaked[i] = getXForT((i + 1) / 100.f); } } float CBezierCurve::getYForT(float t) { return 3 * t * pow(1 - t, 2) * m_dPoints[1].y + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].y + pow(t, 3); } float CBezierCurve::getXForT(float t) { return 3 * t * pow(1 - t, 2) * m_dPoints[1].x + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].x + pow(t, 3); } // Todo: this probably can be done better and faster float CBezierCurve::getYForPoint(float x) { // binary search for the range UPDOWN X float upperX = 1; float lowerX = 0; float mid = 0.5; while(std::abs(upperX - lowerX) > 0.01f) { if (m_aPointsBaked[((int)(mid * 100.f))] > x) { upperX = mid; } else { lowerX = mid; } mid = (upperX + lowerX) / 2.f; } // in the name of performance i shall make a hack const auto PERCINDELTA = (x - m_aPointsBaked[(int)(100.f * lowerX)]) / (m_aPointsBaked[(int)(100.f * upperX)] - m_aPointsBaked[(int)(100.f * lowerX)]); if (std::isnan(PERCINDELTA) || std::isinf(PERCINDELTA)) // can sometimes happen for VERY small x return 0.f; return getYForT(mid + PERCINDELTA * 0.01f); }