Hyprland/src/helpers/BezierCurve.cpp
Tom Englund 72c7818ae6
misc: constify the remaining for loops (#7534)
now we roll loops at blazing constified speed.
2024-08-26 20:24:30 +02:00

79 lines
2.7 KiB
C++

#include "BezierCurve.hpp"
#include "../debug/Log.hpp"
#include "../macros.hpp"
#include <chrono>
#include <algorithm>
void CBezierCurve::setup(std::vector<Vector2D>* pVec) {
m_dPoints.clear();
const auto BEGIN = std::chrono::high_resolution_clock::now();
m_dPoints.emplace_back(Vector2D(0, 0));
for (auto const& p : *pVec) {
m_dPoints.push_back(p);
}
m_dPoints.emplace_back(Vector2D(1, 1));
RASSERT(m_dPoints.size() == 4, "CBezierCurve only supports cubic beziers! (points num: {})", m_dPoints.size());
// bake BAKEDPOINTS points for faster lookups
// T -> X ( / BAKEDPOINTS )
for (int i = 0; i < BAKEDPOINTS; ++i) {
m_aPointsBaked[i] = Vector2D(getXForT((i + 1) / (float)BAKEDPOINTS), getYForT((i + 1) / (float)BAKEDPOINTS));
}
const auto ELAPSEDUS = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - BEGIN).count() / 1000.f;
const auto POINTSSIZE = m_aPointsBaked.size() * sizeof(m_aPointsBaked[0]) / 1000.f;
const auto BEGINCALC = std::chrono::high_resolution_clock::now();
for (int j = 1; j < 10; ++j) {
float i = j / 10.0f;
getYForPoint(i);
}
const auto ELAPSEDCALCAVG = std::chrono::duration_cast<std::chrono::nanoseconds>(std::chrono::high_resolution_clock::now() - BEGINCALC).count() / 1000.f / 10.f;
Debug::log(LOG, "Created a bezier curve, baked {} points, mem usage: {:.2f}kB, time to bake: {:.2f}µs. Estimated average calc time: {:.2f}µs.", BAKEDPOINTS, POINTSSIZE,
ELAPSEDUS, ELAPSEDCALCAVG);
}
float CBezierCurve::getYForT(float t) {
return 3 * t * pow(1 - t, 2) * m_dPoints[1].y + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].y + pow(t, 3);
}
float CBezierCurve::getXForT(float t) {
return 3 * t * pow(1 - t, 2) * m_dPoints[1].x + 3 * pow(t, 2) * (1 - t) * m_dPoints[2].x + pow(t, 3);
}
// Todo: this probably can be done better and faster
float CBezierCurve::getYForPoint(float x) {
if (x >= 1.f)
return 1.f;
int index = 0;
bool below = true;
for (int step = (BAKEDPOINTS + 1) / 2; step > 0; step /= 2) {
if (below)
index += step;
else
index -= step;
below = m_aPointsBaked[index].x < x;
}
int lowerIndex = index - (!below || index == BAKEDPOINTS - 1);
// in the name of performance i shall make a hack
const auto LOWERPOINT = &m_aPointsBaked[lowerIndex];
const auto UPPERPOINT = &m_aPointsBaked[lowerIndex + 1];
const auto PERCINDELTA = (x - LOWERPOINT->x) / (UPPERPOINT->x - LOWERPOINT->x);
if (std::isnan(PERCINDELTA) || std::isinf(PERCINDELTA)) // can sometimes happen for VERY small x
return 0.f;
return LOWERPOINT->y + (UPPERPOINT->y - LOWERPOINT->y) * PERCINDELTA;
}