#pragma once #include inline static constexpr auto ROUNDED_SHADER_FUNC = [](const std::string colorVarName) -> std::string { return R"#( // branchless baby! highp vec2 pixCoord = vec2(gl_FragCoord); pixCoord -= topLeft + fullSize * 0.5; pixCoord *= vec2(lessThan(pixCoord, vec2(0.0))) * -2.0 + 1.0; pixCoord -= fullSize * 0.5 - radius; pixCoord += vec2(1.0, 1.0) / fullSize; // center the pix dont make it top-left if (pixCoord.x + pixCoord.y > radius) { float dist = length(pixCoord); if (dist > radius + 1.0) discard; if (dist > radius - 1.0) { float dist = length(pixCoord); float normalized = 1.0 - smoothstep(0.0, 1.0, dist - radius + 0.5); )#" + colorVarName + R"#( = )#" + colorVarName + R"#( * normalized; } } )#"; }; inline const std::string QUADVERTSRC = R"#( uniform mat3 proj; uniform vec4 color; attribute vec2 pos; attribute vec2 texcoord; attribute vec2 texcoordMatte; varying vec4 v_color; varying vec2 v_texcoord; varying vec2 v_texcoordMatte; void main() { gl_Position = vec4(proj * vec3(pos, 1.0), 1.0); v_color = color; v_texcoord = texcoord; v_texcoordMatte = texcoordMatte; })#"; inline const std::string QUADFRAGSRC = R"#( precision highp float; varying vec4 v_color; uniform vec2 topLeft; uniform vec2 fullSize; uniform float radius; void main() { vec4 pixColor = v_color; if (radius > 0.0) { )#" + ROUNDED_SHADER_FUNC("pixColor") + R"#( } gl_FragColor = pixColor; })#"; inline const std::string TEXVERTSRC = R"#( uniform mat3 proj; attribute vec2 pos; attribute vec2 texcoord; varying vec2 v_texcoord; void main() { gl_Position = vec4(proj * vec3(pos, 1.0), 1.0); v_texcoord = texcoord; })#"; inline const std::string TEXFRAGSRCRGBA = R"#( precision highp float; varying vec2 v_texcoord; // is in 0-1 uniform sampler2D tex; uniform float alpha; uniform vec2 topLeft; uniform vec2 fullSize; uniform float radius; uniform int discardOpaque; uniform int discardAlpha; uniform float discardAlphaValue; uniform int applyTint; uniform vec3 tint; void main() { vec4 pixColor = texture2D(tex, v_texcoord); if (discardOpaque == 1 && pixColor[3] * alpha == 1.0) discard; if (discardAlpha == 1 && pixColor[3] <= discardAlphaValue) discard; if (applyTint == 1) { pixColor[0] = pixColor[0] * tint[0]; pixColor[1] = pixColor[1] * tint[1]; pixColor[2] = pixColor[2] * tint[2]; } if (radius > 0.0) { )#" + ROUNDED_SHADER_FUNC("pixColor") + R"#( } gl_FragColor = pixColor * alpha; })#"; inline const std::string FRAGBLUR1 = R"#( #version 100 precision highp float; varying highp vec2 v_texcoord; // is in 0-1 uniform sampler2D tex; uniform float radius; uniform vec2 halfpixel; uniform int passes; uniform float vibrancy; uniform float vibrancy_darkness; // see http://alienryderflex.com/hsp.html const float Pr = 0.299; const float Pg = 0.587; const float Pb = 0.114; // Y is "v" ( brightness ). X is "s" ( saturation ) // see https://www.desmos.com/3d/a88652b9a4 // Determines if high brightness or high saturation is more important const float a = 0.93; const float b = 0.11; const float c = 0.66; // Determines the smoothness of the transition of unboosted to boosted colors // // http://www.flong.com/archive/texts/code/shapers_circ/ float doubleCircleSigmoid(float x, float a) { a = clamp(a, 0.0, 1.0); float y = .0; if (x <= a) { y = a - sqrt(a * a - x * x); } else { y = a + sqrt(pow(1. - a, 2.) - pow(x - 1., 2.)); } return y; } vec3 rgb2hsl(vec3 col) { float red = col.r; float green = col.g; float blue = col.b; float minc = min(col.r, min(col.g, col.b)); float maxc = max(col.r, max(col.g, col.b)); float delta = maxc - minc; float lum = (minc + maxc) * 0.5; float sat = 0.0; float hue = 0.0; if (lum > 0.0 && lum < 1.0) { float mul = (lum < 0.5) ? (lum) : (1.0 - lum); sat = delta / (mul * 2.0); } if (delta > 0.0) { vec3 maxcVec = vec3(maxc); vec3 masks = vec3(equal(maxcVec, col)) * vec3(notEqual(maxcVec, vec3(green, blue, red))); vec3 adds = vec3(0.0, 2.0, 4.0) + vec3(green - blue, blue - red, red - green) / delta; hue += dot(adds, masks); hue /= 6.0; if (hue < 0.0) hue += 1.0; } return vec3(hue, sat, lum); } vec3 hsl2rgb(vec3 col) { const float onethird = 1.0 / 3.0; const float twothird = 2.0 / 3.0; const float rcpsixth = 6.0; float hue = col.x; float sat = col.y; float lum = col.z; vec3 xt = vec3(0.0); if (hue < onethird) { xt.r = rcpsixth * (onethird - hue); xt.g = rcpsixth * hue; xt.b = 0.0; } else if (hue < twothird) { xt.r = 0.0; xt.g = rcpsixth * (twothird - hue); xt.b = rcpsixth * (hue - onethird); } else xt = vec3(rcpsixth * (hue - twothird), 0.0, rcpsixth * (1.0 - hue)); xt = min(xt, 1.0); float sat2 = 2.0 * sat; float satinv = 1.0 - sat; float luminv = 1.0 - lum; float lum2m1 = (2.0 * lum) - 1.0; vec3 ct = (sat2 * xt) + satinv; vec3 rgb; if (lum >= 0.5) rgb = (luminv * ct) + lum2m1; else rgb = lum * ct; return rgb; } void main() { vec2 uv = v_texcoord * 2.0; vec4 sum = texture2D(tex, uv) * 4.0; sum += texture2D(tex, uv - halfpixel.xy * radius); sum += texture2D(tex, uv + halfpixel.xy * radius); sum += texture2D(tex, uv + vec2(halfpixel.x, -halfpixel.y) * radius); sum += texture2D(tex, uv - vec2(halfpixel.x, -halfpixel.y) * radius); vec4 color = sum / 8.0; if (vibrancy == 0.0) { gl_FragColor = color; } else { // Invert it so that it correctly maps to the config setting float vibrancy_darkness1 = 1.0 - vibrancy_darkness; // Decrease the RGB components based on their perceived brightness, to prevent visually dark colors from overblowing the rest. vec3 hsl = rgb2hsl(color.rgb); // Calculate perceived brightness, as not boost visually dark colors like deep blue as much as equally saturated yellow float perceivedBrightness = doubleCircleSigmoid(sqrt(color.r * color.r * Pr + color.g * color.g * Pg + color.b * color.b * Pb), 0.8 * vibrancy_darkness1); float b1 = b * vibrancy_darkness1; float boostBase = hsl[1] > 0.0 ? smoothstep(b1 - c * 0.5, b1 + c * 0.5, 1.0 - (pow(1.0 - hsl[1] * cos(a), 2.0) + pow(1.0 - perceivedBrightness * sin(a), 2.0))) : 0.0; float saturation = clamp(hsl[1] + (boostBase * vibrancy) / float(passes), 0.0, 1.0); vec3 newColor = hsl2rgb(vec3(hsl[0], saturation, hsl[2])); gl_FragColor = vec4(newColor, color[3]); } } )#"; inline const std::string FRAGBLUR2 = R"#( #version 100 precision highp float; varying highp vec2 v_texcoord; // is in 0-1 uniform sampler2D tex; uniform float radius; uniform vec2 halfpixel; void main() { vec2 uv = v_texcoord / 2.0; vec4 sum = texture2D(tex, uv + vec2(-halfpixel.x * 2.0, 0.0) * radius); sum += texture2D(tex, uv + vec2(-halfpixel.x, halfpixel.y) * radius) * 2.0; sum += texture2D(tex, uv + vec2(0.0, halfpixel.y * 2.0) * radius); sum += texture2D(tex, uv + vec2(halfpixel.x, halfpixel.y) * radius) * 2.0; sum += texture2D(tex, uv + vec2(halfpixel.x * 2.0, 0.0) * radius); sum += texture2D(tex, uv + vec2(halfpixel.x, -halfpixel.y) * radius) * 2.0; sum += texture2D(tex, uv + vec2(0.0, -halfpixel.y * 2.0) * radius); sum += texture2D(tex, uv + vec2(-halfpixel.x, -halfpixel.y) * radius) * 2.0; gl_FragColor = sum / 12.0; } )#"; inline const std::string FRAGBLURPREPARE = R"#( precision highp float; varying vec2 v_texcoord; // is in 0-1 uniform sampler2D tex; uniform float contrast; uniform float brightness; float gain(float x, float k) { float a = 0.5 * pow(2.0 * ((x < 0.5) ? x : 1.0 - x), k); return (x < 0.5) ? a : 1.0 - a; } void main() { vec4 pixColor = texture2D(tex, v_texcoord); // contrast if (contrast != 1.0) { pixColor.r = gain(pixColor.r, contrast); pixColor.g = gain(pixColor.g, contrast); pixColor.b = gain(pixColor.b, contrast); } // brightness if (brightness > 1.0) { pixColor.rgb *= brightness; } gl_FragColor = pixColor; } )#"; inline const std::string FRAGBLURFINISH = R"#( precision highp float; varying vec2 v_texcoord; // is in 0-1 uniform sampler2D tex; uniform float noise; uniform float brightness; float hash(vec2 p) { return fract(sin(dot(p, vec2(12.9898, 78.233))) * 43758.5453); } void main() { vec4 pixColor = texture2D(tex, v_texcoord); // noise float noiseHash = hash(v_texcoord); float noiseAmount = (mod(noiseHash, 1.0) - 0.5); pixColor.rgb += noiseAmount * noise; // brightness if (brightness < 1.0) { pixColor.rgb *= brightness; } gl_FragColor = pixColor; } )#";