mirror of
https://github.com/hyprwm/wlroots-hyprland.git
synced 2024-11-21 20:35:58 +01:00
Annotate the source
This commit is contained in:
parent
f0d8b793a8
commit
33d9d9f175
3 changed files with 277 additions and 0 deletions
|
@ -1,5 +1,8 @@
|
|||
WAYLAND_PROTOCOLS=/usr/share/wayland-protocols
|
||||
|
||||
# wayland-scanner is a tool which generates C headers and rigging for Wayland
|
||||
# protocols, which are specified in XML. wlroots requires you to rig these up
|
||||
# to your build system yourself and provide them in the include path.
|
||||
xdg-shell-protocol.h:
|
||||
wayland-scanner server-header \
|
||||
$(WAYLAND_PROTOCOLS)/stable/xdg-shell/xdg-shell.xml $@
|
||||
|
|
|
@ -31,3 +31,17 @@ keybindings. TinyWL supports the following keybindings:
|
|||
|
||||
- `Alt+Escape`: Terminate the compositor
|
||||
- `Alt+F1`: Cycle between windows
|
||||
|
||||
## Limitations
|
||||
|
||||
Notable omissions from TinyWL:
|
||||
|
||||
- HiDPI support
|
||||
- Any kind of configuration, e.g. output layout
|
||||
- Any protocol other than xdg-shell (e.g. layer-shell, for
|
||||
panels/taskbars/etc; or Xwayland, for proxied X11 windows)
|
||||
- Optional protocols, e.g. screen capture, primary selection, virtual
|
||||
keyboard, etc. Most of these are plug-and-play with wlroots, but they're
|
||||
omitted for brevity.
|
||||
- Damage tracking, which tracks which parts of the screen are changing and
|
||||
minimizes redraws accordingly.
|
||||
|
|
260
tinywl/tinywl.c
260
tinywl/tinywl.c
|
@ -24,6 +24,7 @@
|
|||
#include <wlr/util/log.h>
|
||||
#include <xkbcommon/xkbcommon.h>
|
||||
|
||||
/* For brevity's sake, struct members are annotated where they are used. */
|
||||
enum tinywl_cursor_mode {
|
||||
TINYWL_CURSOR_PASSTHROUGH,
|
||||
TINYWL_CURSOR_MOVE,
|
||||
|
@ -97,6 +98,7 @@ struct tinywl_pointer {
|
|||
};
|
||||
|
||||
static void focus_view(struct tinywl_view *view, struct wlr_surface *surface) {
|
||||
/* Note: this function only deals with keyboard focus. */
|
||||
if (view == NULL) {
|
||||
return;
|
||||
}
|
||||
|
@ -104,31 +106,60 @@ static void focus_view(struct tinywl_view *view, struct wlr_surface *surface) {
|
|||
struct wlr_seat *seat = server->seat;
|
||||
struct wlr_surface *prev_surface = seat->keyboard_state.focused_surface;
|
||||
if (prev_surface == surface) {
|
||||
/* Don't re-focus an already focused surface. */
|
||||
return;
|
||||
}
|
||||
if (prev_surface) {
|
||||
/*
|
||||
* Deactivate the previously focused surface. This lets the client know
|
||||
* it no longer has focus and the client will repaint accordingly, e.g.
|
||||
* stop displaying a caret.
|
||||
*/
|
||||
struct wlr_xdg_surface *previous = wlr_xdg_surface_from_wlr_surface(
|
||||
seat->keyboard_state.focused_surface);
|
||||
wlr_xdg_toplevel_set_activated(previous, false);
|
||||
}
|
||||
struct wlr_keyboard *keyboard = wlr_seat_get_keyboard(seat);
|
||||
/* Move the view to the front */
|
||||
wl_list_remove(&view->link);
|
||||
wl_list_insert(&server->views, &view->link);
|
||||
/* Activate the new surface */
|
||||
wlr_xdg_toplevel_set_activated(view->xdg_surface, true);
|
||||
/*
|
||||
* Tell the seat to have the keyboard enter this surface. wlroots will keep
|
||||
* track of this and automatically send key events to the appropriate
|
||||
* clients without additional work on your part.
|
||||
*/
|
||||
wlr_seat_keyboard_notify_enter(seat, view->xdg_surface->surface,
|
||||
keyboard->keycodes, keyboard->num_keycodes, &keyboard->modifiers);
|
||||
}
|
||||
|
||||
static void keyboard_handle_modifiers(
|
||||
struct wl_listener *listener, void *data) {
|
||||
/* This event is raised when a modifier key, such as shift or alt, is
|
||||
* pressed. We simply communicate this to the client. */
|
||||
struct tinywl_keyboard *keyboard =
|
||||
wl_container_of(listener, keyboard, modifiers);
|
||||
/*
|
||||
* A seat can only have one keyboard, but this is a limitation of the
|
||||
* Wayland protocol - not wlroots. We assign all connected keyboards to the
|
||||
* same seat. You can swap out the underlying wlr_keyboard like this and
|
||||
* wlr_seat handles this transparently.
|
||||
*/
|
||||
wlr_seat_set_keyboard(keyboard->server->seat, keyboard->device);
|
||||
/* Send modifiers to the client. */
|
||||
wlr_seat_keyboard_notify_modifiers(keyboard->server->seat,
|
||||
&keyboard->device->keyboard->modifiers);
|
||||
}
|
||||
|
||||
static bool handle_keybinding(struct tinywl_server *server, xkb_keysym_t sym) {
|
||||
/*
|
||||
* Here we handle compositor keybindings. This is when the compositor is
|
||||
* processing keys, rather than passing them on to the client for its own
|
||||
* processing.
|
||||
*
|
||||
* This function assumes Alt is held down.
|
||||
*/
|
||||
switch (sym) {
|
||||
case XKB_KEY_Escape:
|
||||
wl_display_terminate(server->wl_display);
|
||||
|
@ -155,13 +186,16 @@ static bool handle_keybinding(struct tinywl_server *server, xkb_keysym_t sym) {
|
|||
|
||||
static void keyboard_handle_key(
|
||||
struct wl_listener *listener, void *data) {
|
||||
/* This event is raised when a key is pressed or released. */
|
||||
struct tinywl_keyboard *keyboard =
|
||||
wl_container_of(listener, keyboard, key);
|
||||
struct tinywl_server *server = keyboard->server;
|
||||
struct wlr_event_keyboard_key *event = data;
|
||||
struct wlr_seat *seat = server->seat;
|
||||
|
||||
/* Translate libinput keycode -> xkbcommon */
|
||||
uint32_t keycode = event->keycode + 8;
|
||||
/* Get a list of keysyms based on the keymap for this keyboard */
|
||||
const xkb_keysym_t *syms;
|
||||
int nsyms = xkb_state_key_get_syms(
|
||||
keyboard->device->keyboard->xkb_state, keycode, &syms);
|
||||
|
@ -169,12 +203,15 @@ static void keyboard_handle_key(
|
|||
bool handled = false;
|
||||
uint32_t modifiers = wlr_keyboard_get_modifiers(keyboard->device->keyboard);
|
||||
if ((modifiers & WLR_MODIFIER_ALT) && event->state == WLR_KEY_PRESSED) {
|
||||
/* If alt is held down and this button was _pressed_, we attempt to
|
||||
* process it as a compositor keybinding. */
|
||||
for (int i = 0; i < nsyms; i++) {
|
||||
handled = handle_keybinding(server, syms[i]);
|
||||
}
|
||||
}
|
||||
|
||||
if (!handled) {
|
||||
/* Otherwise, we pass it along to the client. */
|
||||
wlr_seat_set_keyboard(seat, keyboard->device);
|
||||
wlr_seat_keyboard_notify_key(seat, event->time_msec,
|
||||
event->keycode, event->state);
|
||||
|
@ -188,6 +225,8 @@ static void server_new_keyboard(struct tinywl_server *server,
|
|||
keyboard->server = server;
|
||||
keyboard->device = device;
|
||||
|
||||
/* We need to prepare an XKB keymap and assign it to the keyboard. This
|
||||
* assumes the defaults (e.g. layout = "us"). */
|
||||
struct xkb_rule_names rules = { 0 };
|
||||
struct xkb_context *context = xkb_context_new(XKB_CONTEXT_NO_FLAGS);
|
||||
struct xkb_keymap *keymap = xkb_map_new_from_names(context, &rules,
|
||||
|
@ -198,6 +237,7 @@ static void server_new_keyboard(struct tinywl_server *server,
|
|||
xkb_context_unref(context);
|
||||
wlr_keyboard_set_repeat_info(device->keyboard, 25, 600);
|
||||
|
||||
/* Here we set up listeners for keyboard events. */
|
||||
keyboard->modifiers.notify = keyboard_handle_modifiers;
|
||||
wl_signal_add(&device->keyboard->events.modifiers, &keyboard->modifiers);
|
||||
keyboard->key.notify = keyboard_handle_key;
|
||||
|
@ -205,15 +245,22 @@ static void server_new_keyboard(struct tinywl_server *server,
|
|||
|
||||
wlr_seat_set_keyboard(server->seat, device);
|
||||
|
||||
/* And add the keyboard to our list of keyboards */
|
||||
wl_list_insert(&server->keyboards, &keyboard->link);
|
||||
}
|
||||
|
||||
static void server_new_pointer(struct tinywl_server *server,
|
||||
struct wlr_input_device *device) {
|
||||
/* We don't do anything special with pointers. All of our pointer handling
|
||||
* is proxied through wlr_cursor. On another compositor, you might take this
|
||||
* opportunity to do libinput configuration on the device to set
|
||||
* acceleration, etc. */
|
||||
wlr_cursor_attach_input_device(server->cursor, device);
|
||||
}
|
||||
|
||||
static void server_new_input(struct wl_listener *listener, void *data) {
|
||||
/* This event is raised by the backend when a new input device becomes
|
||||
* available. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, new_input);
|
||||
struct wlr_input_device *device = data;
|
||||
|
@ -225,6 +272,9 @@ static void server_new_input(struct wl_listener *listener, void *data) {
|
|||
server_new_pointer(server, device);
|
||||
break;
|
||||
}
|
||||
/* We need to let the wlr_seat know what our capabilities are, which is
|
||||
* communiciated to the client. In TinyWL we always have a cursor, even if
|
||||
* there are no pointer devices, so we always include that capability. */
|
||||
uint32_t caps = WL_SEAT_CAPABILITY_POINTER;
|
||||
if (!wl_list_empty(&server->keyboards)) {
|
||||
caps |= WL_SEAT_CAPABILITY_KEYBOARD;
|
||||
|
@ -235,10 +285,17 @@ static void server_new_input(struct wl_listener *listener, void *data) {
|
|||
static void seat_request_cursor(struct wl_listener *listener, void *data) {
|
||||
struct tinywl_server *server = wl_container_of(
|
||||
listener, server, request_cursor);
|
||||
/* This event is rasied by the seat when a client provides a cursor image */
|
||||
struct wlr_seat_pointer_request_set_cursor_event *event = data;
|
||||
struct wlr_seat_client *focused_client =
|
||||
server->seat->pointer_state.focused_client;
|
||||
/* This can be sent by any client, so we check to make sure this one is
|
||||
* actually has pointer focus first. */
|
||||
if (focused_client == event->seat_client) {
|
||||
/* Once we've vetted the client, we can tell the cursor to use the
|
||||
* provided surface as the cursor image. It will set the hardware cursor
|
||||
* on the output that it's currently on and continue to do so as the
|
||||
* cursor moves between outputs. */
|
||||
wlr_cursor_set_surface(server->cursor, event->surface,
|
||||
event->hotspot_x, event->hotspot_y);
|
||||
}
|
||||
|
@ -247,6 +304,13 @@ static void seat_request_cursor(struct wl_listener *listener, void *data) {
|
|||
static bool view_at(struct tinywl_view *view,
|
||||
double lx, double ly, struct wlr_surface **surface,
|
||||
double *sx, double *sy) {
|
||||
/*
|
||||
* XDG toplevels may have nested surfaces, such as popup windows for context
|
||||
* menus or tooltips. This function tests if any of those are underneath the
|
||||
* coordinates lx and ly (in output Layout Coordinates). If so, it sets the
|
||||
* surface pointer to that wlr_surface and the sx and sy coordinates to the
|
||||
* coordinates relative to that surface's top-left corner.
|
||||
*/
|
||||
double view_sx = lx - view->x;
|
||||
double view_sy = ly - view->y;
|
||||
|
||||
|
@ -270,6 +334,8 @@ static bool view_at(struct tinywl_view *view,
|
|||
static struct tinywl_view *desktop_view_at(
|
||||
struct tinywl_server *server, double lx, double ly,
|
||||
struct wlr_surface **surface, double *sx, double *sy) {
|
||||
/* This iterates over all of our surfaces and attempts to find one under the
|
||||
* cursor. This relies on server->views being ordered from top-to-bottom. */
|
||||
struct tinywl_view *view;
|
||||
wl_list_for_each(view, &server->views, link) {
|
||||
if (view_at(view, lx, ly, surface, sx, sy)) {
|
||||
|
@ -280,11 +346,22 @@ static struct tinywl_view *desktop_view_at(
|
|||
}
|
||||
|
||||
static void process_cursor_move(struct tinywl_server *server, uint32_t time) {
|
||||
/* Move the grabbed view to the new position. */
|
||||
server->grabbed_view->x = server->cursor->x - server->grab_x;
|
||||
server->grabbed_view->y = server->cursor->y - server->grab_y;
|
||||
}
|
||||
|
||||
static void process_cursor_resize(struct tinywl_server *server, uint32_t time) {
|
||||
/*
|
||||
* Resizing the grabbed view can be a little bit complicated, because we
|
||||
* could be resizing from any corner or edge. This not only resizes the view
|
||||
* on one or two axes, but can also move the view if you resize from the top
|
||||
* or left edges (or top-left corner).
|
||||
*
|
||||
* Note that I took some shortcuts here. In a more fleshed-out compositor,
|
||||
* you'd wait for the client to prepare a buffer at the new size, then
|
||||
* commit any movement that was prepared.
|
||||
*/
|
||||
struct tinywl_view *view = server->grabbed_view;
|
||||
double dx = server->cursor->x - server->grab_x;
|
||||
double dy = server->cursor->y - server->grab_y;
|
||||
|
@ -316,6 +393,7 @@ static void process_cursor_resize(struct tinywl_server *server, uint32_t time) {
|
|||
}
|
||||
|
||||
static void process_cursor_motion(struct tinywl_server *server, uint32_t time) {
|
||||
/* If the mode is non-passthrough, delegate to those functions. */
|
||||
if (server->cursor_mode == TINYWL_CURSOR_MOVE) {
|
||||
process_cursor_move(server, time);
|
||||
return;
|
||||
|
@ -324,30 +402,53 @@ static void process_cursor_motion(struct tinywl_server *server, uint32_t time) {
|
|||
return;
|
||||
}
|
||||
|
||||
/* Otherwise, find the view under the pointer and send the event along. */
|
||||
double sx, sy;
|
||||
struct wlr_seat *seat = server->seat;
|
||||
struct wlr_surface *surface = NULL;
|
||||
struct tinywl_view *view = desktop_view_at(server,
|
||||
server->cursor->x, server->cursor->y, &surface, &sx, &sy);
|
||||
if (!view) {
|
||||
/* If there's no view under the cursor, set the cursor image to a
|
||||
* default. This is what makes the cursor image appear when you move it
|
||||
* around the screen, not over any views. */
|
||||
wlr_xcursor_manager_set_cursor_image(
|
||||
server->cursor_mgr, "left_ptr", server->cursor);
|
||||
}
|
||||
if (surface) {
|
||||
bool focus_changed = seat->pointer_state.focused_surface != surface;
|
||||
/*
|
||||
* "Enter" the surface if necessary. This lets the client know that the
|
||||
* cursor has entered one of its surfaces.
|
||||
*
|
||||
* Note that this gives the surface "pointer focus", which is distinct
|
||||
* from keyboard focus. You get pointer focus by moving the pointer over
|
||||
* a window.
|
||||
*/
|
||||
wlr_seat_pointer_notify_enter(seat, surface, sx, sy);
|
||||
if (!focus_changed) {
|
||||
/* The enter event contains coordinates, so we only need to notify
|
||||
* on motion if the focus did not change. */
|
||||
wlr_seat_pointer_notify_motion(seat, time, sx, sy);
|
||||
}
|
||||
} else {
|
||||
/* Clear pointer focus so future button events and such are not sent to
|
||||
* the last client to have the cursor over it. */
|
||||
wlr_seat_pointer_clear_focus(seat);
|
||||
}
|
||||
}
|
||||
|
||||
static void server_cursor_motion(struct wl_listener *listener, void *data) {
|
||||
/* This event is forwarded by the cursor when a pointer emits a _relative_
|
||||
* pointer motion event (i.e. a delta) */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, cursor_motion);
|
||||
struct wlr_event_pointer_motion *event = data;
|
||||
/* The cursor doesn't move unless we tell it to. The cursor automatically
|
||||
* handles constraining the motion to the output layout, as well as any
|
||||
* special configuration applied for the specific input device which
|
||||
* generated the event. You can pass NULL for the device if you want to move
|
||||
* the cursor around without any input. */
|
||||
wlr_cursor_move(server->cursor, event->device,
|
||||
event->delta_x, event->delta_y);
|
||||
process_cursor_motion(server, event->time_msec);
|
||||
|
@ -355,6 +456,12 @@ static void server_cursor_motion(struct wl_listener *listener, void *data) {
|
|||
|
||||
static void server_cursor_motion_absolute(
|
||||
struct wl_listener *listener, void *data) {
|
||||
/* This event is forwarded by the cursor when a pointer emits an _absolute_
|
||||
* motion event, from 0..1 on each axis. This happens, for example, when
|
||||
* wlroots is running under a Wayland window rather than KMS+DRM, and you
|
||||
* move the mouse over the window. You could enter the window from any edge,
|
||||
* so we have to warp the mouse there. There is also some hardware which
|
||||
* emits these events. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, cursor_motion_absolute);
|
||||
struct wlr_event_pointer_motion_absolute *event = data;
|
||||
|
@ -363,9 +470,12 @@ static void server_cursor_motion_absolute(
|
|||
}
|
||||
|
||||
static void server_cursor_button(struct wl_listener *listener, void *data) {
|
||||
/* This event is forwarded by the cursor when a pointer emits a button
|
||||
* event. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, cursor_button);
|
||||
struct wlr_event_pointer_button *event = data;
|
||||
/* Notify the client with pointer focus that a button press has occured */
|
||||
wlr_seat_pointer_notify_button(server->seat,
|
||||
event->time_msec, event->button, event->state);
|
||||
double sx, sy;
|
||||
|
@ -374,21 +484,28 @@ static void server_cursor_button(struct wl_listener *listener, void *data) {
|
|||
struct tinywl_view *view = desktop_view_at(server,
|
||||
server->cursor->x, server->cursor->y, &surface, &sx, &sy);
|
||||
if (event->state == WLR_BUTTON_RELEASED) {
|
||||
/* If you released any buttons, we exit interactive move/resize mode. */
|
||||
server->cursor_mode = TINYWL_CURSOR_PASSTHROUGH;
|
||||
} else {
|
||||
/* Focus that client if the button was _pressed_ */
|
||||
focus_view(view, surface);
|
||||
}
|
||||
}
|
||||
|
||||
static void server_cursor_axis(struct wl_listener *listener, void *data) {
|
||||
/* This event is forwarded by the cursor when a pointer emits an axis event,
|
||||
* for example when you move the scroll wheel. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, cursor_axis);
|
||||
struct wlr_event_pointer_axis *event = data;
|
||||
/* Notify the client with pointer focus of the axis event. */
|
||||
wlr_seat_pointer_notify_axis(server->seat,
|
||||
event->time_msec, event->orientation, event->delta,
|
||||
event->delta_discrete, event->source);
|
||||
}
|
||||
|
||||
/* Used to move all of the data necessary to render a surface from the top-level
|
||||
* frame handler to the per-surface render function. */
|
||||
struct render_data {
|
||||
struct wlr_output *output;
|
||||
struct wlr_renderer *renderer;
|
||||
|
@ -398,20 +515,32 @@ struct render_data {
|
|||
|
||||
static void render_surface(struct wlr_surface *surface,
|
||||
int sx, int sy, void *data) {
|
||||
/* This function is called for every surface that needs to be rendered. */
|
||||
struct render_data *rdata = data;
|
||||
struct tinywl_view *view = rdata->view;
|
||||
struct wlr_output *output = rdata->output;
|
||||
|
||||
/* We first obtain a wlr_texture, which is a GPU resource. wlroots
|
||||
* automatically handles negotiating these with the client. The underlying
|
||||
* resource could be an opaque handle passed from the client, or the client
|
||||
* could have sent a pixel buffer which we copied to the GPU, or a few other
|
||||
* means. You don't have to worry about this, wlroots takes care of it. */
|
||||
struct wlr_texture *texture = wlr_surface_get_texture(surface);
|
||||
if (texture == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* The view has a position in layout coordinates. If you have two displays,
|
||||
* one next to the other, both 1080p, a view on the rightmost display might
|
||||
* have layout coordinates of 2000,100. We need to translate that to
|
||||
* output-local coordinates, or (2000 - 1920). */
|
||||
double ox = 0, oy = 0;
|
||||
wlr_output_layout_output_coords(
|
||||
view->server->output_layout, output, &ox, &oy);
|
||||
ox += view->x + sx, oy += view->y + sy;
|
||||
|
||||
/* We also have to apply the scale factor for HiDPI outputs. This is only
|
||||
* part of the puzzle, TinyWL does not fully support HiDPI. */
|
||||
struct wlr_box box = {
|
||||
.x = ox * output->scale,
|
||||
.y = oy * output->scale,
|
||||
|
@ -419,18 +548,35 @@ static void render_surface(struct wlr_surface *surface,
|
|||
.height = surface->current.height * output->scale,
|
||||
};
|
||||
|
||||
/*
|
||||
* Those familiar with OpenGL are also familiar with the role of matricies
|
||||
* in graphics programming. We need to prepare a matrix to render the view
|
||||
* with. wlr_matrix_project_box is a helper which takes a box with a desired
|
||||
* x, y coodrinates, width and height, and an output geometry, then
|
||||
* prepares an orthographic projection and multiplies the necessary
|
||||
* transforms to produce a model-view-projection matrix.
|
||||
*
|
||||
* Naturally you can do this any way you like, for example to make a 3D
|
||||
* compositor.
|
||||
*/
|
||||
float matrix[9];
|
||||
enum wl_output_transform transform =
|
||||
wlr_output_transform_invert(surface->current.transform);
|
||||
wlr_matrix_project_box(matrix, &box, transform, 0,
|
||||
output->transform_matrix);
|
||||
|
||||
/* This takes our matrix, the texture, and an alpha, and performs the actual
|
||||
* rendering on the GPU. */
|
||||
wlr_render_texture_with_matrix(rdata->renderer, texture, matrix, 1);
|
||||
|
||||
/* This lets the client know that we've displayed that frame and it can
|
||||
* prepare another one now if it likes. */
|
||||
wlr_surface_send_frame_done(surface, rdata->when);
|
||||
}
|
||||
|
||||
static void output_frame(struct wl_listener *listener, void *data) {
|
||||
/* This function is called every time an output is ready to display a frame,
|
||||
* generally at the output's refresh rate (e.g. 60Hz). */
|
||||
struct tinywl_output *output =
|
||||
wl_container_of(listener, output, frame);
|
||||
struct wlr_renderer *renderer = output->server->renderer;
|
||||
|
@ -438,19 +584,25 @@ static void output_frame(struct wl_listener *listener, void *data) {
|
|||
struct timespec now;
|
||||
clock_gettime(CLOCK_MONOTONIC, &now);
|
||||
|
||||
/* wlr_output_make_current makes the OpenGL context current. */
|
||||
if (!wlr_output_make_current(output->wlr_output, NULL)) {
|
||||
return;
|
||||
}
|
||||
/* The "effective" resolution can change if you rotate your outputs. */
|
||||
int width, height;
|
||||
wlr_output_effective_resolution(output->wlr_output, &width, &height);
|
||||
/* Begin the renderer (calls glViewport and some other GL sanity checks) */
|
||||
wlr_renderer_begin(renderer, width, height);
|
||||
|
||||
float color[4] = {0.3, 0.3, 0.3, 1.0};
|
||||
wlr_renderer_clear(renderer, color);
|
||||
|
||||
/* Each subsequent window we render is rendered on top of the last. Because
|
||||
* our view list is ordered front-to-back, we iterate over it backwards. */
|
||||
struct tinywl_view *view;
|
||||
wl_list_for_each_reverse(view, &output->server->views, link) {
|
||||
if (!view->mapped) {
|
||||
/* An unmapped view should not be rendered. */
|
||||
continue;
|
||||
}
|
||||
struct render_data rdata = {
|
||||
|
@ -459,50 +611,73 @@ static void output_frame(struct wl_listener *listener, void *data) {
|
|||
.renderer = renderer,
|
||||
.when = &now,
|
||||
};
|
||||
/* This calls our render_surface function for each surface among the
|
||||
* xdg_surface's toplevel and popups. */
|
||||
wlr_xdg_surface_for_each_surface(view->xdg_surface,
|
||||
render_surface, &rdata);
|
||||
}
|
||||
|
||||
/* Conclude rendering and swap the buffers, showing the final frame
|
||||
* on-screen. */
|
||||
wlr_renderer_end(renderer);
|
||||
wlr_output_swap_buffers(output->wlr_output, NULL, NULL);
|
||||
}
|
||||
|
||||
static void server_new_output(struct wl_listener *listener, void *data) {
|
||||
/* This event is rasied by the backend when a new output (aka a display or
|
||||
* monitor) becomes available. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, new_output);
|
||||
struct wlr_output *wlr_output = data;
|
||||
|
||||
/* Some backends don't have modes. DRM+KMS does, and we need to set a mode
|
||||
* before we can use the output. The mode is a tuple of (width, height,
|
||||
* refresh rate), and each monitor supports only a specific set of modes. We
|
||||
* just pick the first, a more sophisticated compositor would let the user
|
||||
* configure it or pick the mode the display advertises as preferred. */
|
||||
if (!wl_list_empty(&wlr_output->modes)) {
|
||||
struct wlr_output_mode *mode =
|
||||
wl_container_of(wlr_output->modes.prev, mode, link);
|
||||
wlr_output_set_mode(wlr_output, mode);
|
||||
}
|
||||
|
||||
/* Allocates and configures our state for this output */
|
||||
struct tinywl_output *output =
|
||||
calloc(1, sizeof(struct tinywl_output));
|
||||
output->wlr_output = wlr_output;
|
||||
output->server = server;
|
||||
/* Sets up a listener for the frame notify event. */
|
||||
output->frame.notify = output_frame;
|
||||
wl_signal_add(&wlr_output->events.frame, &output->frame);
|
||||
wl_list_insert(&server->outputs, &output->link);
|
||||
|
||||
/* Adds this to the output layout. The add_auto function arranges outputs
|
||||
* from left-to-right in the order they appear. A more sophisticated
|
||||
* compositor would let the user configure the arrangement of outputs in the
|
||||
* layout. */
|
||||
wlr_output_layout_add_auto(server->output_layout, wlr_output);
|
||||
|
||||
/* Creating the global adds a wl_output global to the display, which Wayland
|
||||
* clients can see to find out information about the output (such as
|
||||
* DPI, scale factor, manufacturer, etc). */
|
||||
wlr_output_create_global(wlr_output);
|
||||
}
|
||||
|
||||
static void xdg_surface_map(struct wl_listener *listener, void *data) {
|
||||
/* Called when the surface is mapped, or ready to display on-screen. */
|
||||
struct tinywl_view *view = wl_container_of(listener, view, map);
|
||||
view->mapped = true;
|
||||
focus_view(view, view->xdg_surface->surface);
|
||||
}
|
||||
|
||||
static void xdg_surface_unmap(struct wl_listener *listener, void *data) {
|
||||
/* Called when the surface is unmapped, and should no longer be shown. */
|
||||
struct tinywl_view *view = wl_container_of(listener, view, unmap);
|
||||
view->mapped = false;
|
||||
}
|
||||
|
||||
static void xdg_surface_destroy(struct wl_listener *listener, void *data) {
|
||||
/* Called when the surface is destroyed and should never be shown again. */
|
||||
struct tinywl_view *view = wl_container_of(listener, view, destroy);
|
||||
wl_list_remove(&view->link);
|
||||
free(view);
|
||||
|
@ -510,10 +685,14 @@ static void xdg_surface_destroy(struct wl_listener *listener, void *data) {
|
|||
|
||||
static void begin_interactive(struct tinywl_view *view,
|
||||
enum tinywl_cursor_mode mode, uint32_t edges) {
|
||||
/* This function sets up an interactive move or resize operation, where the
|
||||
* compositor stops propegating pointer events to clients and instead
|
||||
* consumes them itself, to move or resize windows. */
|
||||
struct tinywl_server *server = view->server;
|
||||
struct wlr_surface *focused_surface =
|
||||
server->seat->pointer_state.focused_surface;
|
||||
if (view->xdg_surface->surface != focused_surface) {
|
||||
/* Deny move/resize requests from unfocused clients. */
|
||||
return;
|
||||
}
|
||||
server->grabbed_view = view;
|
||||
|
@ -534,18 +713,30 @@ static void begin_interactive(struct tinywl_view *view,
|
|||
|
||||
static void xdg_toplevel_request_move(
|
||||
struct wl_listener *listener, void *data) {
|
||||
/* This event is raised when a client would like to begin an interactive
|
||||
* move, typically because the user clicked on their client-side
|
||||
* decorations. Note that a more sophisticated compositor should check the
|
||||
* provied serial against a list of button press serials sent to this
|
||||
* client, to prevent the client from requesting this whenver they want. */
|
||||
struct tinywl_view *view = wl_container_of(listener, view, request_move);
|
||||
begin_interactive(view, TINYWL_CURSOR_MOVE, 0);
|
||||
}
|
||||
|
||||
static void xdg_toplevel_request_resize(
|
||||
struct wl_listener *listener, void *data) {
|
||||
/* This event is raised when a client would like to begin an interactive
|
||||
* resize, typically because the user clicked on their client-side
|
||||
* decorations. Note that a more sophisticated compositor should check the
|
||||
* provied serial against a list of button press serials sent to this
|
||||
* client, to prevent the client from requesting this whenver they want. */
|
||||
struct wlr_xdg_toplevel_resize_event *event = data;
|
||||
struct tinywl_view *view = wl_container_of(listener, view, request_resize);
|
||||
begin_interactive(view, TINYWL_CURSOR_RESIZE, event->edges);
|
||||
}
|
||||
|
||||
static void server_new_xdg_surface(struct wl_listener *listener, void *data) {
|
||||
/* This event is raised when wlr_xdg_shell receives a new xdg surface from a
|
||||
* client, either a toplevel (application window) or popup. */
|
||||
struct tinywl_server *server =
|
||||
wl_container_of(listener, server, new_xdg_surface);
|
||||
struct wlr_xdg_surface *xdg_surface = data;
|
||||
|
@ -553,11 +744,13 @@ static void server_new_xdg_surface(struct wl_listener *listener, void *data) {
|
|||
return;
|
||||
}
|
||||
|
||||
/* Allocate a tinywl_view for this surface */
|
||||
struct tinywl_view *view =
|
||||
calloc(1, sizeof(struct tinywl_view));
|
||||
view->server = server;
|
||||
view->xdg_surface = xdg_surface;
|
||||
|
||||
/* Listen to the various events it can emit */
|
||||
view->map.notify = xdg_surface_map;
|
||||
wl_signal_add(&xdg_surface->events.map, &view->map);
|
||||
view->unmap.notify = xdg_surface_unmap;
|
||||
|
@ -565,12 +758,14 @@ static void server_new_xdg_surface(struct wl_listener *listener, void *data) {
|
|||
view->destroy.notify = xdg_surface_destroy;
|
||||
wl_signal_add(&xdg_surface->events.destroy, &view->destroy);
|
||||
|
||||
/* cotd */
|
||||
struct wlr_xdg_toplevel *toplevel = xdg_surface->toplevel;
|
||||
view->request_move.notify = xdg_toplevel_request_move;
|
||||
wl_signal_add(&toplevel->events.request_move, &view->request_move);
|
||||
view->request_resize.notify = xdg_toplevel_request_resize;
|
||||
wl_signal_add(&toplevel->events.request_resize, &view->request_resize);
|
||||
|
||||
/* Add it to the list of views. */
|
||||
wl_list_insert(&server->views, &view->link);
|
||||
}
|
||||
|
||||
|
@ -595,34 +790,83 @@ int main(int argc, char *argv[]) {
|
|||
}
|
||||
|
||||
struct tinywl_server server;
|
||||
/* The Wayland display is managed by libwayland. It handles accepting
|
||||
* clients from the Unix socket, manging Wayland globals, and so on. */
|
||||
server.wl_display = wl_display_create();
|
||||
/* The backend is a wlroots feature which abstracts the underlying input and
|
||||
* output hardware. The autocreate option will choose the most suitable
|
||||
* backend based on the current environment, such as opening an X11 window
|
||||
* if an X11 server is running. The NULL argument here optionally allows you
|
||||
* to pass in a custom renderer if wlr_renderer doesn't meet your needs. The
|
||||
* backend uses the renderer, for example, to fall back to software cursors
|
||||
* if the backend does not support hardware cursors (some older GPUs
|
||||
* don't). */
|
||||
server.backend = wlr_backend_autocreate(server.wl_display, NULL);
|
||||
|
||||
/* If we don't provide a renderer, autocreate makes a GLES2 renderer for us.
|
||||
* The renderer is responsible for defining the various pixel formats it
|
||||
* supports for shared memory, this configures that for clients. */
|
||||
server.renderer = wlr_backend_get_renderer(server.backend);
|
||||
wlr_renderer_init_wl_display(server.renderer, server.wl_display);
|
||||
|
||||
/* This creates some hands-off wlroots interfaces. The compositor is
|
||||
* necessary for clients to allocate surfaces, dmabuf allows them to use
|
||||
* opaque GPU handles for buffers to avoid copying pixels on the CPU, and
|
||||
* the data device manager handles the clipboard. Each of these wlroots
|
||||
* interfaces has room for you to dig your fingers in and play with their
|
||||
* behavior if you want. */
|
||||
wlr_compositor_create(server.wl_display, server.renderer);
|
||||
wlr_linux_dmabuf_v1_create(server.wl_display, server.renderer);
|
||||
wlr_data_device_manager_create(server.wl_display);
|
||||
|
||||
/* Creates an output layout, which a wlroots utility for working with an
|
||||
* arrangement of screens in a physical layout. */
|
||||
server.output_layout = wlr_output_layout_create();
|
||||
|
||||
/* Configure a listener to be notified when new outputs are available on the
|
||||
* backend. */
|
||||
wl_list_init(&server.outputs);
|
||||
server.new_output.notify = server_new_output;
|
||||
wl_signal_add(&server.backend->events.new_output, &server.new_output);
|
||||
|
||||
/* Set up our list of views and the xdg-shell. The xdg-shell is a Wayland
|
||||
* protocol which is used for application windows. For more detail on
|
||||
* shells, refer to my article:
|
||||
*
|
||||
* https://drewdevault.com/2018/07/29/Wayland-shells.html
|
||||
*/
|
||||
wl_list_init(&server.views);
|
||||
server.xdg_shell = wlr_xdg_shell_create(server.wl_display);
|
||||
server.new_xdg_surface.notify = server_new_xdg_surface;
|
||||
wl_signal_add(&server.xdg_shell->events.new_surface,
|
||||
&server.new_xdg_surface);
|
||||
|
||||
/*
|
||||
* Creates a cursor, which is a wlroots utility for tracking the cursor
|
||||
* image shown on screen.
|
||||
*/
|
||||
server.cursor = wlr_cursor_create();
|
||||
wlr_cursor_attach_output_layout(server.cursor, server.output_layout);
|
||||
|
||||
/* Creates an xcursor manager, another wlroots utility which loads up
|
||||
* Xcursor themes to source cursor images from and makes sure that cursor
|
||||
* images are available at all scale factors on the screen (necessary for
|
||||
* HiDPI support). We add a cursor theme at scale factor 1 to begin with. */
|
||||
server.cursor_mgr = wlr_xcursor_manager_create(NULL, 24);
|
||||
wlr_xcursor_manager_load(server.cursor_mgr, 1);
|
||||
|
||||
/*
|
||||
* wlr_cursor *only* displays an image on screen. It does not move around
|
||||
* when the pointer moves. However, we can attach input devices to it, and
|
||||
* it will generate aggregate events for all of them. In these events, we
|
||||
* can choose how we want to process them, forwarding them to clients and
|
||||
* moving the cursor around. More detail on this process is described in my
|
||||
* input handling blog post:
|
||||
*
|
||||
* https://drewdevault.com/2018/07/17/Input-handling-in-wlroots.html
|
||||
*
|
||||
* And more comments are sprinkled throughout the notify functions above.
|
||||
*/
|
||||
server.cursor_motion.notify = server_cursor_motion;
|
||||
wl_signal_add(&server.cursor->events.motion, &server.cursor_motion);
|
||||
server.cursor_motion_absolute.notify = server_cursor_motion_absolute;
|
||||
|
@ -633,6 +877,12 @@ int main(int argc, char *argv[]) {
|
|||
server.cursor_axis.notify = server_cursor_axis;
|
||||
wl_signal_add(&server.cursor->events.axis, &server.cursor_axis);
|
||||
|
||||
/*
|
||||
* Configures a seat, which is a single "seat" at which a user sits and
|
||||
* operates the computer. This conceptually includes up to one keyboard,
|
||||
* pointer, touch, and drawing tablet device. We also rig up a listener to
|
||||
* let us know when new input devices are available on the backend.
|
||||
*/
|
||||
wl_list_init(&server.keyboards);
|
||||
server.new_input.notify = server_new_input;
|
||||
wl_signal_add(&server.backend->events.new_input, &server.new_input);
|
||||
|
@ -641,28 +891,38 @@ int main(int argc, char *argv[]) {
|
|||
wl_signal_add(&server.seat->events.request_set_cursor,
|
||||
&server.request_cursor);
|
||||
|
||||
/* Add a Unix socket to the Wayland display. */
|
||||
const char *socket = wl_display_add_socket_auto(server.wl_display);
|
||||
if (!socket) {
|
||||
wlr_backend_destroy(server.backend);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Start the backend. This will enumerate outputs and inputs, become the DRM
|
||||
* master, etc */
|
||||
if (!wlr_backend_start(server.backend)) {
|
||||
wlr_backend_destroy(server.backend);
|
||||
wl_display_destroy(server.wl_display);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Set the WAYLAND_DISPLAY environment variable to our socket and run the
|
||||
* startup command if requested. */
|
||||
setenv("WAYLAND_DISPLAY", socket, true);
|
||||
if (startup_cmd) {
|
||||
if (fork() == 0) {
|
||||
execl("/bin/sh", "/bin/sh", "-c", startup_cmd, (void *)NULL);
|
||||
}
|
||||
}
|
||||
/* Run the Wayland event loop. This does not return until you exit the
|
||||
* compositor. Starting the backend rigged up all of the necessary event
|
||||
* loop configuration to listen to libinput events, DRM events, generate
|
||||
* frame events at the refresh rate, and so on. */
|
||||
wlr_log(WLR_INFO, "Running Wayland compositor on WAYLAND_DISPLAY=%s",
|
||||
socket);
|
||||
wl_display_run(server.wl_display);
|
||||
|
||||
/* Once wl_display_run returns, we shut down the server. */
|
||||
wl_display_destroy_clients(server.wl_display);
|
||||
wl_display_destroy(server.wl_display);
|
||||
return 0;
|
||||
|
|
Loading…
Reference in a new issue