Rely on wlr_output's generic swapchain support instead of creating our
own. The headless output now simply keeps a reference to the front buffer
and does nothing else.
Introduce wlr_shm_client_buffer, which provides a wlr_buffer wrapper
around wl_shm_buffer.
Because the client can destroy the wl_buffer while we still are using
it, we need to do some libwayland tricks to still be able to continue
accessing its underlying storage. We need to reference the wl_shm_pool
and save the data pointer.
This new API allows buffer implementations to know when a user is
actively accessing the buffer's underlying storage. This is
important for the upcoming client-backed wlr_buffer implementation.
Prior to this commit, subsurfaces could only be placed above their
parent. Any place_{above,below} request involving the parent would
fail with a protocol error.
However the Wayland protocol allows using the parent surface in the
place_{above,below} requests, and allows subsurfaces to be placed
below their parent.
Weston's implementation adds a dummy wl_list node in the subsurface
list. However this is potentially dangerous: iterating the list
requires making sure the dummy wl_list node is checked for, otherwise
memory corruption will happen.
Instead, split the list in two: one for subsurfaces above the parent,
the other for subsurfaces below.
Tested with wleird's subsurfaces demo client.
Closes: https://github.com/swaywm/wlroots/issues/1865
There isn't always a good time to prune old tokens. Compositors
which only implement a "give focus on activation" logic can prune
tokens on focus change. However other compositors might want to
implement other semantics, e.g. "mark urgent on activation". In this
case a focus change shouldn't invalidate other tokens.
Additionally, some tokens aren't necessarily tied to a seat.
To avoid ending up with an ever-growing list of tokens, add a timeout.
Instead of passing a wlr_texture to the backend, directly pass a
wlr_buffer. Use get_cursor_size and get_cursor_formats to create
a wlr_buffer that can be used as a cursor.
We don't want to pass a wlr_texture because we want to remove as
many rendering bits from the backend as possible.
This allows compositors to choose a wlr_buffer to render to. This
is a less awkward interface than having to call bind_buffer() before
and after begin() and end().
Closes: https://github.com/swaywm/wlroots/issues/2618
When picking a format, the backend needs to know whether the
buffers allocated by the allocator will be DMA-BUFs or shared
memory. So far, the backend used the renderer's supported
buffer types to guess this information.
This is pretty fragile: renderers in general don't care about the
SHM cap (they only care about the DATA_PTR one). Additionally,
nothing stops a renderer from supporting both DMA-BUFs and shared
memory, but this would break the backend's guess.
Instead, use wlr_allocator.buffer_caps. This is more reliable since
the buffers created with the allocator are guaranteed to have these
caps.
This allows users to know the capabilities of the buffers that
will be allocated. The buffer capability is important to
know when negotiating buffer formats.
This property is present on all modern X11 instances. The nonpresence of
it requires applications to fall back to XQueryTree-based logic to
determine stacking logic (e.g., to determine what surface should get
Xdnd events).
These code paths are effectively untested nowadays, so this makes it
more likely for wlroots to "break" applications. For instance, the
XQueryTree fallback path has been broken in Chromium for the last 10
years.
It's easy enough to maintain this property, so let's just do it.
Fixes#2889.
When importing a DMA-BUF wlr_buffer as a wlr_texture, the GLES2
renderer caches the result, in case the buffer is used for texturing
again in the future. When the wlr_texture is destroyed by the caller,
the wlr_buffer is unref'ed, but the wlr_gles2_texture is kept around.
This is fine because wlr_gles2_texture listens for wlr_buffer's destroy
event to avoid any use-after-free.
However, with this logic wlr_texture_destroy doesn't "really" destroy
the wlr_gles2_texture. It just decrements the wlr_buffer ref'count.
Each wlr_texture_destroy call must have a matching prior
wlr_texture_create_from_buffer call or the ref'counting will go south.
Wehn destroying the renderer, we don't want to decrement any wlr_buffer
ref'count. Instead, we want to go through any cached wlr_gles2_texture
and destroy our GL state. So instead of calling wlr_texture_destroy, we
need to call our internal gles2_texture_destroy function.
Closes: https://github.com/swaywm/wlroots/issues/2941
Instead of managing our own renderer and allocator, let the common
code do it.
Because wlr_headless_backend_create_with_renderer needs to re-use
the parent renderer, we have to hand-roll some of the renderer
initialization.
This new functions cleans up the common backend state. While this
currently only emits the destroy signal, this will also clean up
the renderer and allocator in upcoming patches.