Adds `wlr_buffer_resource_interface` and `wlr_buffer_register_resource_interface`,
which allows a user to register a way to create a wlr_buffer from a specific
wl_resource.
The first time wlr_buffer_from_resource is called with a wl_buffer
resource that originates from wl_shm, create a new
wlr_shm_client_buffer as usual. If wlr_buffer_from_resource is called
multiple times, re-use the existing wlr_shm_client_buffer.
This commit changes how the wlr_shm_client_buffer lifetime is managed:
previously it was destroyed as soon as the wlr_buffer was released.
With this commit it's destroyed when the wl_buffer resource is.
Apart from de-duplicating wlr_shm_client_buffer creations, this allows
to easily track when a wlr_shm_client_buffer is re-used. This is useful
for the renderer and the backends, e.g. the Pixman renderer can keep
using the same Pixman image if the buffer is re-used. In the future,
this will also allow to re-use resources in the Wayland and X11 backends
(remote wl_buffer objects for Wayland, pixmaps for X11).
This function doesn't need the wl_resource anymore.
In the failure paths, wlr_buffer_unlock in surface_apply_damage
will take care of sending wl_buffer.release.
We often juggle between wlr_buffer and wlr_client_buffer variables.
Use a consistent naming: "buffer" for wlr_buffer and "client_buffer"
for wlr_client_buffer.
`wlr_client_buffer_import` is splitted in two distincts function:
- wlr_buffer_from_resource, which transforms a wl_resource into
a wlr_buffer
- wlr_client_buffer_create, which creates a wlr_client_buffer
from a wlr_buffer by creating a texture from it and copying its
wl_resource
Everything needs to go through the unified wlr_buffer interface
now.
If necessary, there are two ways support for
EGL_WL_bind_wayland_display could be restored by compositors:
- Either by using GBM to convert back EGL Wayland buffers to
DMA-BUFs, then wrap the DMA-BUF into a wlr_buffer.
- Or by wrapping the EGL Wayland buffer into a special wlr_buffer
that doesn't implement any wlr_buffer_impl hook, and special-case
that buffer type in the renderer.
This allows renderers to choose between implementing the old
wlr_renderer_impl.texture_from_wl_drm hook, or opt for the new
wlr_drm stub. The stub has the advantage of not requiring any
special support code: stubbed wl_drm buffers look exactly like
DMA-BUFs from linux-dmabuf-unstable-v1.
Introduce wlr_shm_client_buffer, which provides a wlr_buffer wrapper
around wl_shm_buffer.
Because the client can destroy the wl_buffer while we still are using
it, we need to do some libwayland tricks to still be able to continue
accessing its underlying storage. We need to reference the wl_shm_pool
and save the data pointer.
This new API allows buffer implementations to know when a user is
actively accessing the buffer's underlying storage. This is
important for the upcoming client-backed wlr_buffer implementation.
Consumers call wlr_buffer_lock. Once all consumers are done with the
buffer, only the producer should have a reference to the buffer. In this
case, we can release the buffer (and let the producer re-use it).
Split out the client/resource handling out of wlr_buffer by introducing
wlr_client_buffer. Make wlr_buffer an interface so that compositors can
create their own wlr_buffers (e.g. backed by GBM, like glider [1]).
[1]: c66847dd1c/include/gbm_allocator.h (L7)
In case the texture can't be imported, release the buffer so that the
client can submit another one. In case the allocation fails, disconnect
the client.
After some discussions on #wayland, it seems that as soon as you
hold a reference to a DMA-BUF (via EGLImage for instance), the
underlying memory won't get free'd. The client is allowed to
re-use the DMA-BUF and upload something else to it though.