All we can do to influence adaptive sync on the X11 backend is set the
_VARIABLE_REFRESH window property like mesa automatically does. We don't
have any control beyond that, so we set the state to enabled on creating
the output and never allow changing it (just like the Wayland backend).
Adaptive sync is effectively always enabled when using the Wayland
backend. This is not something we have control over, so we set the
state to enabled on creating the output and never allow changing it.
Previously, adaptive sync was just a hint and wouldn't make any
atomic commit fail if the backend didn't support it. The main reason
is wlr_output_test wasn't supported at the time.
Now that we have a way for compositors to test whether a change can
work, let's remove the exception for adaptive sync and convert it to
a regular output state field.
We were firing the new_input signal on backend initialization,
before the compositor had the chance to add a listener for it.
Mimick what's done for wl_keyboard: if the backend hasn't been
started, delay wl_touch initialization.
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3473
On newer versions of libinput, the event LIBINPUT_EVENT_POINTER_AXIS
has been deprecated in favour of LIBINPUT_EVENT_POINTER_SCROLL_WHEEL,
LIBINPUT_EVENT_POINTER_SCROLL_FINGER and
LIBINPUT_EVENT_POINTER_SCROLL_CONTINUOUS.
Where new events are provided by the backend, ignore
LIBINPUT_EVENT_POINTER_AXIS, receive high-resolution scroll events from
libinput and emit the appropiate wlr_pointer signal.
Currently, the "wlr_event_pointer_axis" event stores low-resolution
values in its "delta_discrete" field. Low-resolution values are always
multiples of one, i.e., 1 for one wheel detent, 2 for two wheel
detents, etc.
In order to simplify internal handling of events, always transform in
the backend from the low-resolution value into the high-resolution
value.
The transformation is performed by multiplying by 120. The 120 magic
number is used by the kernel and it is exposed to clients in the
"WLR_POINTER_AXIS_DISCRETE_STEP" constant.
Starting with Linux Kernel v5.0 two new axes are available for
mice that support high-resolution wheel scrolling: REL_WHEEL_HI_RES and
REL_HWHEEL_HI_RES.
Both axes send data in fractions of 120 where each multiple of 120
amounts to one logical scroll event. Fractions of 120 indicate a wheel
movement less than one detent.
Three new events are now available on libinput:
LIBINPUT_EVENT_POINTER_SCROLL_WHEEL,
LIBINPUT_EVENT_POINTER_SCROLL_FINGER, and
LIBINPUT_EVENT_POINTER_SCROLL_CONTINUOUS.
These events replace the LIBINPUT_EVENT_POINTER_AXIS event, so new
clients should simply ignore that event.
Also, two new APIs are available to access the high-resolution data:
libinput_event_pointer_get_scroll_value() and
libinput_event_pointer_get_scroll_value_v120().
Add a project argument (LIBINPUT_HAS_SCROLL_VALUE120) to allow
building against old versions of libinput or, where high-resolution
scroll is available, support it.
"max bpc" is a maximum value, the driver is free to choose a
smaller value depending on the bandwidth available.
Some faulty monitors misbehave with higher bpc values. We'll add
a workaround if users get hit by these in practice.
References: https://gitlab.freedesktop.org/wayland/weston/-/issues/612
The EDID 1.4 spec says that the serial number is optional:
> If this field is not used, then enter “00h, 00h, 00h, 00h”.
Leave the wlr_output.serial field NULL in that case, and hide it
from the output description.
CTA-861-G says that "graphics" is used to indicate non-analog (ie,
digital) content. With that bit set, the sink should turn off analog
reconstruction and other related filtering.
Some output commits (changing e.g. the output scale or transform)
don't require any change in the KMS state. Instead of going through
a KMS commit, return early. Blocking KMS commits can be expensive.
The wlr_output API requires compositors to wait for wlr_output.frame
before submitting a new buffer. However, compositors can perform a
commit which doesn't involve a buffer anytime.
If the commit is a modeset, we set DRM_MODE_ATOMIC_ALLOW_MODESET and
block until the commit is done. If it isn't, we currently always
perform a non-blocking commit. This is an issue because a previous
page-flip might still be in flight kernel-side, returning EBUSY.
Fix this by using blocking commits when a buffer isn't submitted by
the compositor.
Closes: https://github.com/swaywm/sway/issues/6962
References: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/2239
This allows the make/model/serial to be NULL when unset, and allows
them to be longer than the hardcoded array length.
This is a breaking change: compositors need to handle the new NULL
case, and we stop setting make/model to useless "headless" or
"wayland" strings.
Prior to [1], if an entry in a DRM format set was different than a
single LINEAR modifier, implicit modifiers were always allowed. This
has changed and now implicit modifiers are only allowed if INVALID
is in the list of modifiers.
So now we can safely enable explicit modifiers for cross-GPU imports,
without risking receiving buffers with an implicit modifier. This
should improve perf a bit on setups where two GPUs from the same vendor
are used.
This fixes the first bullet point from [2].
[1]: https://gitlab.freedesktop.org/wlroots/wlroots/-/merge_requests/3231
[2]: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3331
Maintaining our internal table up-to-date is tedious: one needs to
manually go through the PnP ID registry [1] and check whether we're
missing any entry.
udev_hwdb already has an API to fetch a manufacturer name from its
PnP ID. Use that instead.
[1]: https://uefi.org/pnp_id_list
Instead of waking up each 16ms to emit a frame event, arm the timer
when the output is committed. This allows the headless backend to
idle when nothing changes on screen, and behaves similarly to the
other backends.
All the code logic related to the pointer has been moved to its own file.
The seat is responsible for the lifetime of its wlr_wl_pointer(s), and assigning
them to the relevant wlr_wl_output. The wlr_wl_pointer becomes a simple helper
to manager the wlr_pointer associated to the seat's wl_pointer and its lifetime.
The destroy callback in wlr_touch_impl has been removed. The function
`wlr_touch_finish` has been introduced to clean up the resources owned by a
wlr_touch.
`wlr_input_device_destroy` no longer destroys the wlr_touch, attempting to
destroy a wlr_touch will result in a no-op.
The field `name` has been added to the wlr_touch_impl to be able to identify
a given wlr_touch device.
The destroy callback in wlr_tablet_tool_impl has been removed. The function
`wlr_tablet_tool_finish` has been introduced to clean up the resources owned by
a wlr_tablet_tool.
`wlr_input_device_destroy` no longer destroys the wlr_tablet_tool, attempting to
destroy a wlr_tablet_tool will result in a no-op.
The field `name` has been added to the wlr_tablet_tool_impl to be able to
identify a given wlr_tablet_tool device.
The destroy callback in wlr_tablet_pad_impl has been removed. The function
`wlr_tablet_pad_finish` has been introduced to clean up the resources owned by a
wlr_tablet_pad.
`wlr_input_device_destroy` no longer destroys the wlr_tablet_pad, attempting to
destroy a wlr_tablet_pad will result in a no-op.
The field `name` has been added to the wlr_tablet_pad_impl to be able to identify
a given wlr_tablet_pad device.
The destroy callback in wlr_switch_impl has been removed. The function
`wlr_switch_finish` has been introduced to clean up the resources owned by a
wlr_switch.
`wlr_input_device_destroy` no longer destroys the wlr_switch, attempting to
destroy a wlr_switch will result in a no-op.
The field `name` has been added to the wlr_switch_impl to be able to identify
a given wlr_switch device.
The destroy callback in wlr_pointer_impl has been removed. The function
`wlr_pointer_finish` has been introduced to clean up the resources owned by a
wlr_pointer.
`wlr_input_device_destroy` no longer destroys the wlr_pointer, attempting to
destroy a wlr_pointer will result in a no-op.
The field `name` has been added to the wlr_pointer_impl to be able to identify
a given wlr_pointer device.
The destroy member in wlr_keyboard_impl has been removed. The function
`wlr_keyboard_finish` has been introduce to clean up the resources owned by a
wlr_keyboard.
`wlr_input_device_destroy` no longer destroys the wlr_keyboard, attempting to
destroy a wlr_keyboard will result in a no-op.
The field `name` has been added to the wlr_keyboard_impl to be able to identify
a given wlr_keyboard device.
The libinput backend is now optional. However, this means that a
user building wlroots without the correct libinput dependencies
will end up with a compositor which doesn't respond to input events.
wlr_backend_autocreate is supposed to return a sensible setup, so in
this case let's just error out and explain what happened. Users can
suppress the check by setting WLR_LIBINPUT_NO_DEVICES=1 (already used
to suppress the zero input device case inside the libinput backend).
Compositors which really want to create a bare DRM backend can easily
create it manually instead of using wlr_backend_autocreate.
This patch makes it so we bind to zwp_linux_dmabuf_v1 version 4 and
we use it to grab the main device. v4 sends supported formats via a
table so we need to handle this as well.
v4 allows wlroots to remove the requirement for Mesa's internal
wl_drm interface.
wlroots picks names for all outputs, but it might be desirable for
compositor to override it.
For instance, Sway will use a headless output as a fallback in
case no outputs are connected. Sway wants to clearly label the
fallback output as such and label "real" headless outputs starting
from HEADLESS-1.
When using `meson --buildtype=release`, `-Wextra -Werror` is passed.
This includes `-Werror=maybe-uninitialized`, which complains about
the instances fixed in this commit.
drmModeAddFB2 doesn't support explicit modifiers. Only accept INVALID
which indicates an implicit modifier and LINEAR which may indicate
that GBM_BO_USE_LINEAR has been used.