#define _POSIX_C_SOURCE 200809L #include #include #include #include #include "backend/drm/drm.h" #include "backend/drm/iface.h" static bool init(struct wlr_drm_backend *drm) { // TODO: lower log level liftoff_log_set_priority(LIFTOFF_DEBUG); int drm_fd = fcntl(drm->fd, F_DUPFD_CLOEXEC, 0); if (drm_fd < 0) { wlr_log_errno(WLR_ERROR, "fcntl(F_DUPFD_CLOEXEC) failed"); return false; } drm->liftoff = liftoff_device_create(drm_fd); if (!drm->liftoff) { wlr_log(WLR_ERROR, "Failed to create liftoff device"); close(drm_fd); return false; } for (size_t i = 0; i < drm->num_planes; i++) { struct wlr_drm_plane *plane = &drm->planes[i]; if (plane->initial_crtc_id != 0) { continue; } plane->liftoff = liftoff_plane_create(drm->liftoff, plane->id); if (plane->liftoff == NULL) { wlr_log(WLR_ERROR, "Failed to create liftoff plane"); return false; } } for (size_t i = 0; i < drm->num_crtcs; i++) { struct wlr_drm_crtc *crtc = &drm->crtcs[i]; crtc->liftoff = liftoff_output_create(drm->liftoff, crtc->id); if (!crtc->liftoff) { wlr_log(WLR_ERROR, "Failed to create liftoff output"); return false; } crtc->liftoff_composition_layer = liftoff_layer_create(crtc->liftoff); if (!crtc->liftoff_composition_layer) { wlr_log(WLR_ERROR, "Failed to create liftoff composition layer"); return false; } liftoff_output_set_composition_layer(crtc->liftoff, crtc->liftoff_composition_layer); if (crtc->primary) { crtc->primary->liftoff_layer = liftoff_layer_create(crtc->liftoff); if (!crtc->primary->liftoff_layer) { wlr_log(WLR_ERROR, "Failed to create liftoff layer for primary plane"); return false; } } if (crtc->cursor) { crtc->cursor->liftoff_layer = liftoff_layer_create(crtc->liftoff); if (!crtc->cursor->liftoff_layer) { wlr_log(WLR_ERROR, "Failed to create liftoff layer for cursor plane"); return false; } } } return true; } static bool register_planes_for_crtc(struct wlr_drm_backend *drm, struct wlr_drm_crtc *crtc) { // When performing the first modeset on a CRTC, we need to be a bit careful // when it comes to planes: we don't want to allow libliftoff to make use // of planes currently already in-use on another CRTC. We need to wait for // a modeset to happen on the other CRTC before being able to use these. for (size_t i = 0; i < drm->num_planes; i++) { struct wlr_drm_plane *plane = &drm->planes[i]; if (plane->liftoff != NULL || plane->initial_crtc_id != crtc->id) { continue; } plane->liftoff = liftoff_plane_create(drm->liftoff, plane->id); if (plane->liftoff == NULL) { wlr_log(WLR_ERROR, "Failed to create liftoff plane"); return false; } } return true; } static void finish(struct wlr_drm_backend *drm) { for (size_t i = 0; i < drm->num_crtcs; i++) { struct wlr_drm_crtc *crtc = &drm->crtcs[i]; if (crtc->primary) { liftoff_layer_destroy(crtc->primary->liftoff_layer); } if (crtc->cursor) { liftoff_layer_destroy(crtc->cursor->liftoff_layer); } liftoff_layer_destroy(crtc->liftoff_composition_layer); liftoff_output_destroy(crtc->liftoff); } liftoff_device_destroy(drm->liftoff); } static bool add_prop(drmModeAtomicReq *req, uint32_t obj, uint32_t prop, uint64_t val) { if (drmModeAtomicAddProperty(req, obj, prop, val) < 0) { wlr_log_errno(WLR_ERROR, "drmModeAtomicAddProperty failed"); return false; } return true; } static void commit_blob(struct wlr_drm_backend *drm, uint32_t *current, uint32_t next) { if (*current == next) { return; } if (*current != 0) { drmModeDestroyPropertyBlob(drm->fd, *current); } *current = next; } static void rollback_blob(struct wlr_drm_backend *drm, uint32_t *current, uint32_t next) { if (*current == next) { return; } if (next != 0) { drmModeDestroyPropertyBlob(drm->fd, next); } } static bool set_plane_props(struct wlr_drm_plane *plane, struct liftoff_layer *layer, int32_t x, int32_t y, uint64_t zpos) { struct wlr_drm_fb *fb = plane_get_next_fb(plane); if (fb == NULL) { wlr_log(WLR_ERROR, "Failed to acquire FB"); return false; } uint32_t width = fb->wlr_buf->width; uint32_t height = fb->wlr_buf->height; // The SRC_* properties are in 16.16 fixed point return liftoff_layer_set_property(layer, "zpos", zpos) == 0 && liftoff_layer_set_property(layer, "SRC_X", 0) == 0 && liftoff_layer_set_property(layer, "SRC_Y", 0) == 0 && liftoff_layer_set_property(layer, "SRC_W", (uint64_t)width << 16) == 0 && liftoff_layer_set_property(layer, "SRC_H", (uint64_t)height << 16) == 0 && liftoff_layer_set_property(layer, "CRTC_X", (uint64_t)x) == 0 && liftoff_layer_set_property(layer, "CRTC_Y", (uint64_t)y) == 0 && liftoff_layer_set_property(layer, "CRTC_W", width) == 0 && liftoff_layer_set_property(layer, "CRTC_H", height) == 0 && liftoff_layer_set_property(layer, "FB_ID", fb->id) == 0; } static bool disable_plane(struct wlr_drm_plane *plane) { return liftoff_layer_set_property(plane->liftoff_layer, "FB_ID", 0) == 0; } static bool crtc_commit(struct wlr_drm_connector *conn, const struct wlr_drm_connector_state *state, uint32_t flags, bool test_only) { struct wlr_drm_backend *drm = conn->backend; struct wlr_output *output = &conn->output; struct wlr_drm_crtc *crtc = conn->crtc; bool modeset = state->modeset; bool active = state->active; if (modeset && !register_planes_for_crtc(drm, crtc)) { return false; } uint32_t mode_id = crtc->mode_id; if (modeset) { if (!create_mode_blob(drm, conn, state, &mode_id)) { return false; } } uint32_t gamma_lut = crtc->gamma_lut; if (state->base->committed & WLR_OUTPUT_STATE_GAMMA_LUT) { // Fallback to legacy gamma interface when gamma properties are not // available (can happen on older Intel GPUs that support gamma but not // degamma). if (crtc->props.gamma_lut == 0) { if (!drm_legacy_crtc_set_gamma(drm, crtc, state->base->gamma_lut_size, state->base->gamma_lut)) { return false; } } else { if (!create_gamma_lut_blob(drm, state->base->gamma_lut_size, state->base->gamma_lut, &gamma_lut)) { return false; } } } uint32_t fb_damage_clips = 0; if ((state->base->committed & WLR_OUTPUT_STATE_DAMAGE) && pixman_region32_not_empty((pixman_region32_t *)&state->base->damage) && crtc->primary->props.fb_damage_clips != 0) { int rects_len; const pixman_box32_t *rects = pixman_region32_rectangles( (pixman_region32_t *)&state->base->damage, &rects_len); if (drmModeCreatePropertyBlob(drm->fd, rects, sizeof(*rects) * rects_len, &fb_damage_clips) != 0) { wlr_log_errno(WLR_ERROR, "Failed to create FB_DAMAGE_CLIPS property blob"); } } bool prev_vrr_enabled = output->adaptive_sync_status == WLR_OUTPUT_ADAPTIVE_SYNC_ENABLED; bool vrr_enabled = prev_vrr_enabled; if ((state->base->committed & WLR_OUTPUT_STATE_ADAPTIVE_SYNC_ENABLED) && drm_connector_supports_vrr(conn)) { vrr_enabled = state->base->adaptive_sync_enabled; } if (test_only) { flags |= DRM_MODE_ATOMIC_TEST_ONLY; } if (modeset) { flags |= DRM_MODE_ATOMIC_ALLOW_MODESET; } else if (!test_only && (state->base->committed & WLR_OUTPUT_STATE_BUFFER)) { // The wlr_output API requires non-modeset commits with a new buffer to // wait for the frame event. However compositors often perform // non-modesets commits without a new buffer without waiting for the // frame event. In that case we need to make the KMS commit blocking, // otherwise the kernel will error out with EBUSY. flags |= DRM_MODE_ATOMIC_NONBLOCK; } drmModeAtomicReq *req = drmModeAtomicAlloc(); if (req == NULL) { wlr_log(WLR_ERROR, "drmModeAtomicAlloc failed"); return false; } bool ok = add_prop(req, conn->id, conn->props.crtc_id, active ? crtc->id : 0); if (modeset && active && conn->props.link_status != 0) { ok = ok && add_prop(req, conn->id, conn->props.link_status, DRM_MODE_LINK_STATUS_GOOD); } if (active && conn->props.content_type != 0) { ok = ok && add_prop(req, conn->id, conn->props.content_type, DRM_MODE_CONTENT_TYPE_GRAPHICS); } // TODO: set "max bpc" ok = ok && add_prop(req, crtc->id, crtc->props.mode_id, mode_id) && add_prop(req, crtc->id, crtc->props.active, active); if (active) { if (crtc->props.gamma_lut != 0) { ok = ok && add_prop(req, crtc->id, crtc->props.gamma_lut, gamma_lut); } if (crtc->props.vrr_enabled != 0) { ok = ok && add_prop(req, crtc->id, crtc->props.vrr_enabled, vrr_enabled); } ok = ok && set_plane_props(crtc->primary, crtc->primary->liftoff_layer, 0, 0, 0) && set_plane_props(crtc->primary, crtc->liftoff_composition_layer, 0, 0, 0); liftoff_layer_set_property(crtc->primary->liftoff_layer, "FB_DAMAGE_CLIPS", fb_damage_clips); liftoff_layer_set_property(crtc->liftoff_composition_layer, "FB_DAMAGE_CLIPS", fb_damage_clips); if (crtc->cursor) { if (drm_connector_is_cursor_visible(conn)) { ok = ok && set_plane_props(crtc->cursor, crtc->cursor->liftoff_layer, conn->cursor_x, conn->cursor_y, 1); } else { ok = ok && disable_plane(crtc->cursor); } } } else { ok = ok && disable_plane(crtc->primary); if (crtc->cursor) { ok = ok && disable_plane(crtc->cursor); } } if (!ok) { goto out; } int ret = liftoff_output_apply(crtc->liftoff, req, flags); if (ret != 0) { wlr_drm_conn_log(conn, test_only ? WLR_DEBUG : WLR_ERROR, "liftoff_output_apply failed: %s", strerror(-ret)); ok = false; goto out; } if (crtc->cursor && liftoff_layer_needs_composition(crtc->cursor->liftoff_layer)) { wlr_drm_conn_log(conn, WLR_DEBUG, "Failed to scan-out cursor plane"); ok = false; goto out; } ret = drmModeAtomicCommit(drm->fd, req, flags, drm); if (ret != 0) { wlr_drm_conn_log_errno(conn, test_only ? WLR_DEBUG : WLR_ERROR, "Atomic commit failed"); ok = false; goto out; } out: drmModeAtomicFree(req); if (ok && !test_only) { commit_blob(drm, &crtc->mode_id, mode_id); commit_blob(drm, &crtc->gamma_lut, gamma_lut); if (vrr_enabled != prev_vrr_enabled) { output->adaptive_sync_status = vrr_enabled ? WLR_OUTPUT_ADAPTIVE_SYNC_ENABLED : WLR_OUTPUT_ADAPTIVE_SYNC_DISABLED; wlr_drm_conn_log(conn, WLR_DEBUG, "VRR %s", vrr_enabled ? "enabled" : "disabled"); } } else { rollback_blob(drm, &crtc->mode_id, mode_id); rollback_blob(drm, &crtc->gamma_lut, gamma_lut); } if (fb_damage_clips != 0 && drmModeDestroyPropertyBlob(drm->fd, fb_damage_clips) != 0) { wlr_log_errno(WLR_ERROR, "Failed to destroy FB_DAMAGE_CLIPS property blob"); } return ok; } const struct wlr_drm_interface liftoff_iface = { .init = init, .finish = finish, .crtc_commit = crtc_commit, };