#include <assert.h> #include <math.h> #include <limits.h> #include <stdlib.h> #include <wlr/types/wlr_box.h> #include <wlr/util/region.h> void wlr_region_scale(pixman_region32_t *dst, pixman_region32_t *src, float scale) { if (scale == 1) { pixman_region32_copy(dst, src); return; } int nrects; pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects); pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t)); if (dst_rects == NULL) { return; } for (int i = 0; i < nrects; ++i) { dst_rects[i].x1 = floor(src_rects[i].x1 * scale); dst_rects[i].x2 = ceil(src_rects[i].x2 * scale); dst_rects[i].y1 = floor(src_rects[i].y1 * scale); dst_rects[i].y2 = ceil(src_rects[i].y2 * scale); } pixman_region32_fini(dst); pixman_region32_init_rects(dst, dst_rects, nrects); free(dst_rects); } void wlr_region_transform(pixman_region32_t *dst, pixman_region32_t *src, enum wl_output_transform transform, int width, int height) { if (transform == WL_OUTPUT_TRANSFORM_NORMAL) { pixman_region32_copy(dst, src); return; } int nrects; pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects); pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t)); if (dst_rects == NULL) { return; } for (int i = 0; i < nrects; ++i) { switch (transform) { case WL_OUTPUT_TRANSFORM_NORMAL: dst_rects[i].x1 = src_rects[i].x1; dst_rects[i].y1 = src_rects[i].y1; dst_rects[i].x2 = src_rects[i].x2; dst_rects[i].y2 = src_rects[i].y2; break; case WL_OUTPUT_TRANSFORM_90: dst_rects[i].x1 = src_rects[i].y1; dst_rects[i].y1 = width - src_rects[i].x2; dst_rects[i].x2 = src_rects[i].y2; dst_rects[i].y2 = width - src_rects[i].x1; break; case WL_OUTPUT_TRANSFORM_180: dst_rects[i].x1 = width - src_rects[i].x2; dst_rects[i].y1 = height - src_rects[i].y2; dst_rects[i].x2 = width - src_rects[i].x1; dst_rects[i].y2 = height - src_rects[i].y1; break; case WL_OUTPUT_TRANSFORM_270: dst_rects[i].x1 = height - src_rects[i].y2; dst_rects[i].y1 = src_rects[i].x1; dst_rects[i].x2 = height - src_rects[i].y1; dst_rects[i].y2 = src_rects[i].x2; break; case WL_OUTPUT_TRANSFORM_FLIPPED: dst_rects[i].x1 = width - src_rects[i].x2; dst_rects[i].y1 = src_rects[i].y1; dst_rects[i].x2 = width - src_rects[i].x1; dst_rects[i].y2 = src_rects[i].y2; break; case WL_OUTPUT_TRANSFORM_FLIPPED_90: dst_rects[i].x1 = height - src_rects[i].y2; dst_rects[i].y1 = width - src_rects[i].x2; dst_rects[i].x2 = height - src_rects[i].y1; dst_rects[i].y2 = width - src_rects[i].x1; break; case WL_OUTPUT_TRANSFORM_FLIPPED_180: dst_rects[i].x1 = src_rects[i].x1; dst_rects[i].y1 = height - src_rects[i].y2; dst_rects[i].x2 = src_rects[i].x2; dst_rects[i].y2 = height - src_rects[i].y1; break; case WL_OUTPUT_TRANSFORM_FLIPPED_270: dst_rects[i].x1 = src_rects[i].y1; dst_rects[i].y1 = src_rects[i].x1; dst_rects[i].x2 = src_rects[i].y2; dst_rects[i].y2 = src_rects[i].x2; break; } } pixman_region32_fini(dst); pixman_region32_init_rects(dst, dst_rects, nrects); free(dst_rects); } void wlr_region_expand(pixman_region32_t *dst, pixman_region32_t *src, int distance) { if (distance == 0) { pixman_region32_copy(dst, src); return; } int nrects; pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects); pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t)); if (dst_rects == NULL) { return; } for (int i = 0; i < nrects; ++i) { dst_rects[i].x1 = src_rects[i].x1 - distance; dst_rects[i].x2 = src_rects[i].x2 + distance; dst_rects[i].y1 = src_rects[i].y1 - distance; dst_rects[i].y2 = src_rects[i].y2 + distance; } pixman_region32_fini(dst); pixman_region32_init_rects(dst, dst_rects, nrects); free(dst_rects); } void wlr_region_rotated_bounds(pixman_region32_t *dst, pixman_region32_t *src, float rotation, int ox, int oy) { if (rotation == 0) { pixman_region32_copy(dst, src); return; } int nrects; pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects); pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t)); if (dst_rects == NULL) { return; } for (int i = 0; i < nrects; ++i) { double x1 = src_rects[i].x1 - ox; double y1 = src_rects[i].y1 - oy; double x2 = src_rects[i].x2 - ox; double y2 = src_rects[i].y2 - oy; double rx1 = x1 * cos(rotation) - y1 * sin(rotation); double ry1 = x1 * sin(rotation) + y1 * cos(rotation); double rx2 = x2 * cos(rotation) - y1 * sin(rotation); double ry2 = x2 * sin(rotation) + y1 * cos(rotation); double rx3 = x2 * cos(rotation) - y2 * sin(rotation); double ry3 = x2 * sin(rotation) + y2 * cos(rotation); double rx4 = x1 * cos(rotation) - y2 * sin(rotation); double ry4 = x1 * sin(rotation) + y2 * cos(rotation); x1 = fmin(fmin(rx1, rx2), fmin(rx3, rx4)); y1 = fmin(fmin(ry1, ry2), fmin(ry3, ry4)); x2 = fmax(fmax(rx1, rx2), fmax(rx3, rx4)); y2 = fmax(fmax(ry1, ry2), fmax(ry3, ry4)); dst_rects[i].x1 = floor(ox + x1); dst_rects[i].x2 = ceil(ox + x2); dst_rects[i].y1 = floor(oy + y1); dst_rects[i].y2 = ceil(oy + y2); } pixman_region32_fini(dst); pixman_region32_init_rects(dst, dst_rects, nrects); free(dst_rects); } static void region_confine(pixman_region32_t *region, double x1, double y1, double x2, double y2, double *x2_out, double *y2_out, pixman_box32_t box) { double x_clamped = fmax(fmin(x2, box.x2 - 1), box.x1); double y_clamped = fmax(fmin(y2, box.y2 - 1), box.y1); // If the target coordinates are above box.{x,y}2 - 1, but less than // box.{x,y}2, then they are still within the box. if (floor(x_clamped) == floor(x2) && floor(y_clamped) == floor(y2)) { *x2_out = x2; *y2_out = y2; return; } double dx = x2 - x1; double dy = y2 - y1; // We use fabs to avoid negative zeroes and thus avoid a bug // with negative infinity. double delta = fmin(fabs(x_clamped - x1) / fabs(dx), fabs(y_clamped - y1) / fabs(dy)); // We clamp it again due to precision errors. double x = fmax(fmin(delta * dx + x1, box.x2 - 1), box.x1); double y = fmax(fmin(delta * dy + y1, box.y2 - 1), box.y1); // Go one unit past the boundary to find an adjacent box. int x_ext = floor(x) + (dx == 0 ? 0 : dx > 0 ? 1 : -1); int y_ext = floor(y) + (dy == 0 ? 0 : dy > 0 ? 1 : -1); if (pixman_region32_contains_point(region, x_ext, y_ext, &box)) { return region_confine(region, x1, y1, x2, y2, x2_out, y2_out, box); } else if (dx == 0 || dy == 0) { *x2_out = x; *y2_out = y; } else { bool bordering_x = x == box.x1 || x == box.x2 - 1; bool bordering_y = y == box.y1 || y == box.y2 - 1; if ((bordering_x && bordering_y) || (!bordering_x && !bordering_y)) { double x2_potential, y2_potential; double tmp1, tmp2; region_confine(region, x, y, x, y2, &tmp1, &y2_potential, box); region_confine(region, x, y, x2, y, &x2_potential, &tmp2, box); if (fabs(x2_potential - x) > fabs(y2_potential - y)) { *x2_out = x2_potential; *y2_out = y; } else { *x2_out = x; *y2_out = y2_potential; } } else if (bordering_x) { return region_confine(region, x, y, x, y2, x2_out, y2_out, box); } else if (bordering_y) { return region_confine(region, x, y, x2, y, x2_out, y2_out, box); } } } bool wlr_region_confine(pixman_region32_t *region, double x1, double y1, double x2, double y2, double *x2_out, double *y2_out) { pixman_box32_t box; if (pixman_region32_contains_point(region, floor(x1), floor(y1), &box)) { region_confine(region, x1, y1, x2, y2, x2_out, y2_out, box); return true; } else { return false; } }