#include <assert.h> #include <drm_fourcc.h> #include <stdlib.h> #include <wlr/util/log.h> #include "render/vulkan.h" #include "types/wlr_matrix.h" static const struct wlr_render_pass_impl render_pass_impl; static struct wlr_vk_render_pass *get_render_pass(struct wlr_render_pass *wlr_pass) { assert(wlr_pass->impl == &render_pass_impl); struct wlr_vk_render_pass *pass = wl_container_of(wlr_pass, pass, base); return pass; } static void bind_pipeline(struct wlr_vk_render_pass *pass, VkPipeline pipeline) { if (pipeline == pass->bound_pipeline) { return; } vkCmdBindPipeline(pass->command_buffer->vk, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline); pass->bound_pipeline = pipeline; } static void get_clip_region(struct wlr_vk_render_pass *pass, const pixman_region32_t *in, pixman_region32_t *out) { if (in != NULL) { pixman_region32_init(out); pixman_region32_copy(out, in); } else { struct wlr_buffer *buffer = pass->render_buffer->wlr_buffer; pixman_region32_init_rect(out, 0, 0, buffer->width, buffer->height); } } static void convert_pixman_box_to_vk_rect(const pixman_box32_t *box, VkRect2D *rect) { *rect = (VkRect2D){ .offset = { .x = box->x1, .y = box->y1 }, .extent = { .width = box->x2 - box->x1, .height = box->y2 - box->y1 }, }; } static float color_to_linear(float non_linear) { // See https://www.w3.org/Graphics/Color/srgb return (non_linear > 0.04045) ? pow((non_linear + 0.055) / 1.055, 2.4) : non_linear / 12.92; } static void mat3_to_mat4(const float mat3[9], float mat4[4][4]) { memset(mat4, 0, sizeof(float) * 16); mat4[0][0] = mat3[0]; mat4[0][1] = mat3[1]; mat4[0][3] = mat3[2]; mat4[1][0] = mat3[3]; mat4[1][1] = mat3[4]; mat4[1][3] = mat3[5]; mat4[2][2] = 1.f; mat4[3][3] = 1.f; } static bool render_pass_submit(struct wlr_render_pass *wlr_pass) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); struct wlr_vk_renderer *renderer = pass->renderer; struct wlr_vk_command_buffer *render_cb = pass->command_buffer; struct wlr_vk_render_buffer *render_buffer = pass->render_buffer; struct wlr_vk_command_buffer *stage_cb = NULL; VkSemaphoreSubmitInfoKHR *render_wait = NULL; bool device_lost = false; if (pass->failed) { goto error; } if (vulkan_record_stage_cb(renderer) == VK_NULL_HANDLE) { goto error; } stage_cb = renderer->stage.cb; assert(stage_cb != NULL); renderer->stage.cb = NULL; if (render_buffer->blend_image) { // Apply output shader to map blend image to actual output image vkCmdNextSubpass(render_cb->vk, VK_SUBPASS_CONTENTS_INLINE); int width = pass->render_buffer->wlr_buffer->width; int height = pass->render_buffer->wlr_buffer->height; float final_matrix[9] = { width, 0, -1, 0, height, -1, 0, 0, 0, }; struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { 0, 0 }, .uv_size = { 1, 1 }, }; mat3_to_mat4(final_matrix, vert_pcr_data.mat4); bind_pipeline(pass, render_buffer->render_setup->output_pipe); vkCmdPushConstants(render_cb->vk, renderer->output_pipe_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdBindDescriptorSets(render_cb->vk, VK_PIPELINE_BIND_POINT_GRAPHICS, renderer->output_pipe_layout, 0, 1, &render_buffer->blend_descriptor_set, 0, NULL); const pixman_region32_t *clip = rect_union_evaluate(&pass->updated_region); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles( clip, &clip_rects_len); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(render_cb->vk, 0, 1, &rect); vkCmdDraw(render_cb->vk, 4, 1, 0, 0); } } vkCmdEndRenderPass(render_cb->vk); // insert acquire and release barriers for dmabuf-images uint32_t barrier_count = wl_list_length(&renderer->foreign_textures) + 1; VkImageMemoryBarrier *acquire_barriers = calloc(barrier_count, sizeof(*acquire_barriers)); VkImageMemoryBarrier *release_barriers = calloc(barrier_count, sizeof(*release_barriers)); render_wait = calloc(barrier_count * WLR_DMABUF_MAX_PLANES, sizeof(*render_wait)); if (acquire_barriers == NULL || release_barriers == NULL || render_wait == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); free(acquire_barriers); free(release_barriers); free(render_wait); goto error; } struct wlr_vk_texture *texture, *tmp_tex; size_t idx = 0; uint32_t render_wait_len = 0; wl_list_for_each_safe(texture, tmp_tex, &renderer->foreign_textures, foreign_link) { VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (!texture->transitioned) { src_layout = VK_IMAGE_LAYOUT_UNDEFINED; texture->transitioned = true; } // acquire acquire_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .dstQueueFamilyIndex = renderer->dev->queue_family, .image = texture->image, .oldLayout = src_layout, .newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, .srcAccessMask = 0, // ignored anyways .dstAccessMask = VK_ACCESS_SHADER_READ_BIT, .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; // release release_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = renderer->dev->queue_family, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .image = texture->image, .oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = VK_ACCESS_SHADER_READ_BIT, .dstAccessMask = 0, // ignored anyways .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; ++idx; if (!vulkan_sync_foreign_texture(texture)) { wlr_log(WLR_ERROR, "Failed to wait for foreign texture DMA-BUF fence"); } else { for (size_t i = 0; i < WLR_DMABUF_MAX_PLANES; i++) { if (texture->foreign_semaphores[i] != VK_NULL_HANDLE) { assert(render_wait_len < barrier_count * WLR_DMABUF_MAX_PLANES); render_wait[render_wait_len++] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = texture->foreign_semaphores[i], .stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR, }; } } } wl_list_remove(&texture->foreign_link); texture->owned = false; } // also add acquire/release barriers for the current render buffer VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (!render_buffer->transitioned) { src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED; render_buffer->transitioned = true; } if (render_buffer->blend_image) { // The render pass changes the blend image layout from // color attachment to read only, so on each frame, before // the render pass starts, we change it back VkImageLayout blend_src_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; if (!render_buffer->blend_transitioned) { blend_src_layout = VK_IMAGE_LAYOUT_UNDEFINED; render_buffer->blend_transitioned = true; } VkImageMemoryBarrier blend_acq_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .image = render_buffer->blend_image, .oldLayout = blend_src_layout, .newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, .srcAccessMask = VK_ACCESS_SHADER_READ_BIT, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .layerCount = 1, .levelCount = 1, }, }; vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, 1, &blend_acq_barrier); } // acquire render buffer before rendering acquire_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .dstQueueFamilyIndex = renderer->dev->queue_family, .image = render_buffer->image, .oldLayout = src_layout, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = 0, // ignored anyways .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; // release render buffer after rendering release_barriers[idx] = (VkImageMemoryBarrier){ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .srcQueueFamilyIndex = renderer->dev->queue_family, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT, .image = render_buffer->image, .oldLayout = VK_IMAGE_LAYOUT_GENERAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dstAccessMask = 0, // ignored anyways .subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .subresourceRange.layerCount = 1, .subresourceRange.levelCount = 1, }; ++idx; vkCmdPipelineBarrier(stage_cb->vk, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, barrier_count, acquire_barriers); vkCmdPipelineBarrier(render_cb->vk, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, barrier_count, release_barriers); free(acquire_barriers); free(release_barriers); // No semaphores needed here. // We don't need a semaphore from the stage/transfer submission // to the render submissions since they are on the same queue // and we have a renderpass dependency for that. uint64_t stage_timeline_point = vulkan_end_command_buffer(stage_cb, renderer); if (stage_timeline_point == 0) { goto error; } VkCommandBufferSubmitInfoKHR stage_cb_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR, .commandBuffer = stage_cb->vk, }; VkSemaphoreSubmitInfoKHR stage_signal = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = stage_timeline_point, }; VkSubmitInfo2KHR stage_submit = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR, .commandBufferInfoCount = 1, .pCommandBufferInfos = &stage_cb_info, .signalSemaphoreInfoCount = 1, .pSignalSemaphoreInfos = &stage_signal, }; VkSemaphoreSubmitInfoKHR stage_wait; if (renderer->stage.last_timeline_point > 0) { stage_wait = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = renderer->stage.last_timeline_point, .stageMask = VK_PIPELINE_STAGE_2_ALL_COMMANDS_BIT_KHR, }; stage_submit.waitSemaphoreInfoCount = 1; stage_submit.pWaitSemaphoreInfos = &stage_wait; } renderer->stage.last_timeline_point = stage_timeline_point; uint64_t render_timeline_point = vulkan_end_command_buffer(render_cb, renderer); if (render_timeline_point == 0) { goto error; } uint32_t render_signal_len = 1; VkSemaphoreSubmitInfoKHR render_signal[2] = {0}; render_signal[0] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = renderer->timeline_semaphore, .value = render_timeline_point, }; if (renderer->dev->implicit_sync_interop) { if (render_cb->binary_semaphore == VK_NULL_HANDLE) { VkExportSemaphoreCreateInfo export_info = { .sType = VK_STRUCTURE_TYPE_EXPORT_SEMAPHORE_CREATE_INFO, .handleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT, }; VkSemaphoreCreateInfo semaphore_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = &export_info, }; VkResult res = vkCreateSemaphore(renderer->dev->dev, &semaphore_info, NULL, &render_cb->binary_semaphore); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateSemaphore", res); goto error; } } render_signal[render_signal_len++] = (VkSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_SEMAPHORE_SUBMIT_INFO_KHR, .semaphore = render_cb->binary_semaphore, }; } VkCommandBufferSubmitInfoKHR render_cb_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_SUBMIT_INFO_KHR, .commandBuffer = render_cb->vk, }; VkSubmitInfo2KHR render_submit = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO_2_KHR, .waitSemaphoreInfoCount = render_wait_len, .pWaitSemaphoreInfos = render_wait, .commandBufferInfoCount = 1, .pCommandBufferInfos = &render_cb_info, .signalSemaphoreInfoCount = render_signal_len, .pSignalSemaphoreInfos = render_signal, }; VkSubmitInfo2KHR submit_info[] = { stage_submit, render_submit }; VkResult res = renderer->dev->api.vkQueueSubmit2KHR(renderer->dev->queue, 2, submit_info, VK_NULL_HANDLE); if (res != VK_SUCCESS) { device_lost = res == VK_ERROR_DEVICE_LOST; wlr_vk_error("vkQueueSubmit", res); goto error; } free(render_wait); struct wlr_vk_shared_buffer *stage_buf, *stage_buf_tmp; wl_list_for_each_safe(stage_buf, stage_buf_tmp, &renderer->stage.buffers, link) { if (stage_buf->allocs.size == 0) { continue; } wl_list_remove(&stage_buf->link); wl_list_insert(&stage_cb->stage_buffers, &stage_buf->link); } if (!vulkan_sync_render_buffer(renderer, render_buffer, render_cb)) { wlr_log(WLR_ERROR, "Failed to sync render buffer"); } wlr_buffer_unlock(render_buffer->wlr_buffer); rect_union_finish(&pass->updated_region); free(pass); return true; error: free(render_wait); vulkan_reset_command_buffer(stage_cb); vulkan_reset_command_buffer(render_cb); wlr_buffer_unlock(render_buffer->wlr_buffer); rect_union_finish(&pass->updated_region); free(pass); if (device_lost) { wl_signal_emit_mutable(&renderer->wlr_renderer.events.lost, NULL); } return false; } static void render_pass_mark_box_updated(struct wlr_vk_render_pass *pass, const struct wlr_box *box) { if (!pass->render_buffer->blend_image) { return; } pixman_box32_t pixman_box = { .x1 = box->x, .x2 = box->x + box->width, .y1 = box->y, .y2 = box->y + box->height, }; rect_union_add(&pass->updated_region, pixman_box); } static void render_pass_add_rect(struct wlr_render_pass *wlr_pass, const struct wlr_render_rect_options *options) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); VkCommandBuffer cb = pass->command_buffer->vk; // Input color values are given in sRGB space, shader expects // them in linear space. The shader does all computation in linear // space and expects in inputs in linear space since it outputs // colors in linear space as well (and vulkan then automatically // does the conversion for out sRGB render targets). float linear_color[] = { color_to_linear(options->color.r), color_to_linear(options->color.g), color_to_linear(options->color.b), options->color.a, // no conversion for alpha }; pixman_region32_t clip; get_clip_region(pass, options->clip, &clip); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len); // Record regions possibly updated for use in second subpass for (int i = 0; i < clip_rects_len; i++) { struct wlr_box clip_box = { .x = clip_rects[i].x1, .y = clip_rects[i].y1, .width = clip_rects[i].x2 - clip_rects[i].x1, .height = clip_rects[i].y2 - clip_rects[i].y1, }; struct wlr_box intersection; if (!wlr_box_intersection(&intersection, &options->box, &clip_box)) { continue; } render_pass_mark_box_updated(pass, &intersection); } struct wlr_box box; wlr_render_rect_options_get_box(options, pass->render_buffer->wlr_buffer, &box); switch (options->blend_mode) { case WLR_RENDER_BLEND_MODE_PREMULTIPLIED:; float proj[9], matrix[9]; wlr_matrix_identity(proj); wlr_matrix_project_box(matrix, &box, WL_OUTPUT_TRANSFORM_NORMAL, 0, proj); wlr_matrix_multiply(matrix, pass->projection, matrix); struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline( pass->render_buffer->render_setup, &(struct wlr_vk_pipeline_key) { .source = WLR_VK_SHADER_SOURCE_SINGLE_COLOR, .layout = { .ycbcr_format = NULL }, }); if (!pipe) { pass->failed = true; break; } struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { 0, 0 }, .uv_size = { 1, 1 }, }; mat3_to_mat4(matrix, vert_pcr_data.mat4); bind_pipeline(pass, pipe->vk); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float) * 4, linear_color); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdDraw(cb, 4, 1, 0, 0); } break; case WLR_RENDER_BLEND_MODE_NONE:; VkClearAttachment clear_att = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .colorAttachment = 0, .clearValue.color.float32 = { linear_color[0], linear_color[1], linear_color[2], linear_color[3], }, }; VkClearRect clear_rect = { .rect = { .offset = { box.x, box.y }, .extent = { box.width, box.height }, }, .layerCount = 1, }; for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdClearAttachments(cb, 1, &clear_att, 1, &clear_rect); } break; } pixman_region32_fini(&clip); } static void render_pass_add_texture(struct wlr_render_pass *wlr_pass, const struct wlr_render_texture_options *options) { struct wlr_vk_render_pass *pass = get_render_pass(wlr_pass); struct wlr_vk_renderer *renderer = pass->renderer; struct wlr_vk_render_buffer *render_buffer = pass->render_buffer; VkCommandBuffer cb = pass->command_buffer->vk; struct wlr_vk_texture *texture = vulkan_get_texture(options->texture); assert(texture->renderer == renderer); if (texture->dmabuf_imported && !texture->owned) { // Store this texture in the list of textures that need to be // acquired before rendering and released after rendering. // We don't do it here immediately since barriers inside // a renderpass are suboptimal (would require additional renderpass // dependency and potentially multiple barriers) and it's // better to issue one barrier for all used textures anyways. texture->owned = true; assert(texture->foreign_link.prev == NULL); assert(texture->foreign_link.next == NULL); wl_list_insert(&renderer->foreign_textures, &texture->foreign_link); } struct wlr_fbox src_box; wlr_render_texture_options_get_src_box(options, &src_box); struct wlr_box dst_box; wlr_render_texture_options_get_dst_box(options, &dst_box); float alpha = wlr_render_texture_options_get_alpha(options); pixman_region32_t clip; get_clip_region(pass, options->clip, &clip); float proj[9], matrix[9]; wlr_matrix_identity(proj); wlr_matrix_project_box(matrix, &dst_box, options->transform, 0, proj); wlr_matrix_multiply(matrix, pass->projection, matrix); struct wlr_vk_vert_pcr_data vert_pcr_data = { .uv_off = { src_box.x / options->texture->width, src_box.y / options->texture->height, }, .uv_size = { src_box.width / options->texture->width, src_box.height / options->texture->height, }, }; mat3_to_mat4(matrix, vert_pcr_data.mat4); struct wlr_vk_pipeline *pipe = setup_get_or_create_pipeline( render_buffer->render_setup, &(struct wlr_vk_pipeline_key) { .source = WLR_VK_SHADER_SOURCE_TEXTURE, .layout = { .ycbcr_format = texture->format->is_ycbcr ? texture->format : NULL, .filter_mode = options->filter_mode, }, .texture_transform = texture->transform, .blend_mode = !texture->has_alpha && alpha == 1.0 ? WLR_RENDER_BLEND_MODE_NONE : options->blend_mode, }); if (!pipe) { pass->failed = true; return; } struct wlr_vk_texture_view *view = vulkan_texture_get_or_create_view(texture, pipe->layout); if (!view) { pass->failed = true; return; } bind_pipeline(pass, pipe->vk); vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe->layout->vk, 0, 1, &view->ds, 0, NULL); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, pipe->layout->vk, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float), &alpha); int clip_rects_len; const pixman_box32_t *clip_rects = pixman_region32_rectangles(&clip, &clip_rects_len); for (int i = 0; i < clip_rects_len; i++) { VkRect2D rect; convert_pixman_box_to_vk_rect(&clip_rects[i], &rect); vkCmdSetScissor(cb, 0, 1, &rect); vkCmdDraw(cb, 4, 1, 0, 0); struct wlr_box clip_box = { .x = clip_rects[i].x1, .y = clip_rects[i].y1, .width = clip_rects[i].x2 - clip_rects[i].x1, .height = clip_rects[i].y2 - clip_rects[i].y1, }; struct wlr_box intersection; if (!wlr_box_intersection(&intersection, &dst_box, &clip_box)) { continue; } render_pass_mark_box_updated(pass, &intersection); } texture->last_used_cb = pass->command_buffer; } static const struct wlr_render_pass_impl render_pass_impl = { .submit = render_pass_submit, .add_rect = render_pass_add_rect, .add_texture = render_pass_add_texture, }; struct wlr_vk_render_pass *vulkan_begin_render_pass(struct wlr_vk_renderer *renderer, struct wlr_vk_render_buffer *buffer) { struct wlr_vk_render_pass *pass = calloc(1, sizeof(*pass)); if (pass == NULL) { return NULL; } wlr_render_pass_init(&pass->base, &render_pass_impl); pass->renderer = renderer; rect_union_init(&pass->updated_region); struct wlr_vk_command_buffer *cb = vulkan_acquire_command_buffer(renderer); if (cb == NULL) { free(pass); return NULL; } VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; VkResult res = vkBeginCommandBuffer(cb->vk, &begin_info); if (res != VK_SUCCESS) { wlr_vk_error("vkBeginCommandBuffer", res); vulkan_reset_command_buffer(cb); free(pass); return NULL; } int width = buffer->wlr_buffer->width; int height = buffer->wlr_buffer->height; VkRect2D rect = { .extent = { width, height } }; VkRenderPassBeginInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderArea = rect, .renderPass = buffer->render_setup->render_pass, .framebuffer = buffer->framebuffer, .clearValueCount = 0, }; vkCmdBeginRenderPass(cb->vk, &rp_info, VK_SUBPASS_CONTENTS_INLINE); vkCmdSetViewport(cb->vk, 0, 1, &(VkViewport){ .width = width, .height = height, .maxDepth = 1, }); // matrix_projection() assumes a GL coordinate system so we need // to pass WL_OUTPUT_TRANSFORM_FLIPPED_180 to adjust it for vulkan. matrix_projection(pass->projection, width, height, WL_OUTPUT_TRANSFORM_FLIPPED_180); wlr_buffer_lock(buffer->wlr_buffer); pass->render_buffer = buffer; pass->command_buffer = cb; return pass; }