#define _POSIX_C_SOURCE 200809L #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "render/pixel_format.h" #include "render/vulkan.h" #include "render/vulkan/shaders/common.vert.h" #include "render/vulkan/shaders/texture.frag.h" #include "render/vulkan/shaders/quad.frag.h" #include "types/wlr_buffer.h" #include "types/wlr_matrix.h" // TODO: // - simplify stage allocation, don't track allocations but use ringbuffer-like // - use a pipeline cache (not sure when to save though, after every pipeline // creation?) // - create pipelines as derivatives of each other // - evaluate if creating VkDeviceMemory pools is a good idea. // We can expect wayland client images to be fairly large (and shouldn't // have more than 4k of those I guess) but pooling memory allocations // might still be a good idea. static const VkDeviceSize min_stage_size = 1024 * 1024; // 1MB static const VkDeviceSize max_stage_size = 64 * min_stage_size; // 64MB static const size_t start_descriptor_pool_size = 256u; static bool default_debug = true; static const struct wlr_renderer_impl renderer_impl; bool wlr_renderer_is_vk(struct wlr_renderer *wlr_renderer) { return wlr_renderer->impl == &renderer_impl; } struct wlr_vk_renderer *vulkan_get_renderer(struct wlr_renderer *wlr_renderer) { assert(wlr_renderer_is_vk(wlr_renderer)); return (struct wlr_vk_renderer *)wlr_renderer; } static struct wlr_vk_render_format_setup *find_or_create_render_setup( struct wlr_vk_renderer *renderer, VkFormat format); // vertex shader push constant range data struct vert_pcr_data { float mat4[4][4]; float uv_off[2]; float uv_size[2]; }; // https://www.w3.org/Graphics/Color/srgb static float color_to_linear(float non_linear) { return (non_linear > 0.04045) ? pow((non_linear + 0.055) / 1.055, 2.4) : non_linear / 12.92; } // renderer // util static void mat3_to_mat4(const float mat3[9], float mat4[4][4]) { memset(mat4, 0, sizeof(float) * 16); mat4[0][0] = mat3[0]; mat4[0][1] = mat3[1]; mat4[0][3] = mat3[2]; mat4[1][0] = mat3[3]; mat4[1][1] = mat3[4]; mat4[1][3] = mat3[5]; mat4[2][2] = 1.f; mat4[3][3] = 1.f; } struct wlr_vk_descriptor_pool *vulkan_alloc_texture_ds( struct wlr_vk_renderer *renderer, VkDescriptorSet *ds) { VkResult res; VkDescriptorSetAllocateInfo ds_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorSetCount = 1, .pSetLayouts = &renderer->ds_layout, }; bool found = false; struct wlr_vk_descriptor_pool *pool; wl_list_for_each(pool, &renderer->descriptor_pools, link) { if (pool->free > 0) { found = true; break; } } if (!found) { // create new pool pool = calloc(1, sizeof(*pool)); if (!pool) { wlr_log_errno(WLR_ERROR, "allocation failed"); return NULL; } size_t count = renderer->last_pool_size; if (!count) { count = start_descriptor_pool_size; } pool->free = count; VkDescriptorPoolSize pool_size = { .descriptorCount = count, .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, }; VkDescriptorPoolCreateInfo dpool_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .maxSets = count, .poolSizeCount = 1, .pPoolSizes = &pool_size, .flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, }; res = vkCreateDescriptorPool(renderer->dev->dev, &dpool_info, NULL, &pool->pool); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateDescriptorPool", res); free(pool); return NULL; } wl_list_insert(&renderer->descriptor_pools, &pool->link); } ds_info.descriptorPool = pool->pool; res = vkAllocateDescriptorSets(renderer->dev->dev, &ds_info, ds); if (res != VK_SUCCESS) { wlr_vk_error("vkAllocateDescriptorSets", res); return NULL; } --pool->free; return pool; } void vulkan_free_ds(struct wlr_vk_renderer *renderer, struct wlr_vk_descriptor_pool *pool, VkDescriptorSet ds) { vkFreeDescriptorSets(renderer->dev->dev, pool->pool, 1, &ds); ++pool->free; } static void destroy_render_format_setup(struct wlr_vk_renderer *renderer, struct wlr_vk_render_format_setup *setup) { if (!setup) { return; } VkDevice dev = renderer->dev->dev; vkDestroyRenderPass(dev, setup->render_pass, NULL); vkDestroyPipeline(dev, setup->tex_pipe, NULL); vkDestroyPipeline(dev, setup->quad_pipe, NULL); } static void shared_buffer_destroy(struct wlr_vk_renderer *r, struct wlr_vk_shared_buffer *buffer) { if (!buffer) { return; } if (buffer->allocs.size > 0) { wlr_log(WLR_ERROR, "shared_buffer_finish: %zu allocations left", buffer->allocs.size / sizeof(struct wlr_vk_allocation)); } wl_array_release(&buffer->allocs); if (buffer->buffer) { vkDestroyBuffer(r->dev->dev, buffer->buffer, NULL); } if (buffer->memory) { vkFreeMemory(r->dev->dev, buffer->memory, NULL); } wl_list_remove(&buffer->link); free(buffer); } static void release_stage_allocations(struct wlr_vk_renderer *renderer) { struct wlr_vk_shared_buffer *buf; wl_list_for_each(buf, &renderer->stage.buffers, link) { buf->allocs.size = 0; } } struct wlr_vk_buffer_span vulkan_get_stage_span(struct wlr_vk_renderer *r, VkDeviceSize size) { // try to find free span // simple greedy allocation algorithm - should be enough for this usecase // since all allocations are freed together after the frame struct wlr_vk_shared_buffer *buf; wl_list_for_each_reverse(buf, &r->stage.buffers, link) { VkDeviceSize start = 0u; if (buf->allocs.size > 0) { const struct wlr_vk_allocation *allocs = buf->allocs.data; size_t allocs_len = buf->allocs.size / sizeof(struct wlr_vk_allocation); const struct wlr_vk_allocation *last = &allocs[allocs_len - 1]; start = last->start + last->size; } assert(start <= buf->buf_size); if (buf->buf_size - start < size) { continue; } struct wlr_vk_allocation *a = wl_array_add(&buf->allocs, sizeof(*a)); if (a == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); goto error_alloc; } *a = (struct wlr_vk_allocation){ .start = start, .size = size, }; return (struct wlr_vk_buffer_span) { .buffer = buf, .alloc = *a, }; } // we didn't find a free buffer - create one // size = clamp(max(size * 2, prev_size * 2), min_size, max_size) VkDeviceSize bsize = size * 2; bsize = bsize < min_stage_size ? min_stage_size : bsize; if (!wl_list_empty(&r->stage.buffers)) { struct wl_list *last_link = r->stage.buffers.prev; struct wlr_vk_shared_buffer *prev = wl_container_of( last_link, prev, link); VkDeviceSize last_size = 2 * prev->buf_size; bsize = bsize < last_size ? last_size : bsize; } if (bsize > max_stage_size) { wlr_log(WLR_INFO, "vulkan stage buffers have reached max size"); bsize = max_stage_size; } // create buffer buf = calloc(1, sizeof(*buf)); if (!buf) { wlr_log_errno(WLR_ERROR, "Allocation failed"); goto error_alloc; } VkResult res; VkBufferCreateInfo buf_info = { .sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO, .size = bsize, .usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT, .sharingMode = VK_SHARING_MODE_EXCLUSIVE, }; res = vkCreateBuffer(r->dev->dev, &buf_info, NULL, &buf->buffer); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateBuffer", res); goto error; } VkMemoryRequirements mem_reqs; vkGetBufferMemoryRequirements(r->dev->dev, buf->buffer, &mem_reqs); int mem_type_index = vulkan_find_mem_type(r->dev, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT, mem_reqs.memoryTypeBits); if (mem_type_index < 0) { wlr_log(WLR_ERROR, "Failed to find memory type"); goto error; } VkMemoryAllocateInfo mem_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, .allocationSize = mem_reqs.size, .memoryTypeIndex = (uint32_t)mem_type_index, }; res = vkAllocateMemory(r->dev->dev, &mem_info, NULL, &buf->memory); if (res != VK_SUCCESS) { wlr_vk_error("vkAllocatorMemory", res); goto error; } res = vkBindBufferMemory(r->dev->dev, buf->buffer, buf->memory, 0); if (res != VK_SUCCESS) { wlr_vk_error("vkBindBufferMemory", res); goto error; } struct wlr_vk_allocation *a = wl_array_add(&buf->allocs, sizeof(*a)); if (a == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); goto error; } wlr_log(WLR_DEBUG, "Created new vk staging buffer of size %" PRIu64, bsize); buf->buf_size = bsize; wl_list_insert(&r->stage.buffers, &buf->link); *a = (struct wlr_vk_allocation){ .start = 0, .size = size, }; return (struct wlr_vk_buffer_span) { .buffer = buf, .alloc = *a, }; error: shared_buffer_destroy(r, buf); error_alloc: return (struct wlr_vk_buffer_span) { .buffer = NULL, .alloc = (struct wlr_vk_allocation) {0, 0}, }; } static struct wlr_vk_command_buffer *acquire_command_buffer( struct wlr_vk_renderer *renderer); static uint64_t end_command_buffer(struct wlr_vk_command_buffer *cb, struct wlr_vk_renderer *renderer); static bool wait_command_buffer(struct wlr_vk_command_buffer *cb, struct wlr_vk_renderer *renderer); VkCommandBuffer vulkan_record_stage_cb(struct wlr_vk_renderer *renderer) { if (renderer->stage.cb == NULL) { renderer->stage.cb = acquire_command_buffer(renderer); if (renderer->stage.cb == NULL) { return VK_NULL_HANDLE; } VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; vkBeginCommandBuffer(renderer->stage.cb->vk, &begin_info); } return renderer->stage.cb->vk; } bool vulkan_submit_stage_wait(struct wlr_vk_renderer *renderer) { if (renderer->stage.cb == NULL) { return false; } struct wlr_vk_command_buffer *cb = renderer->stage.cb; renderer->stage.cb = NULL; uint64_t timeline_point = end_command_buffer(cb, renderer); if (timeline_point == 0) { return false; } VkTimelineSemaphoreSubmitInfoKHR timeline_submit_info = { .sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR, .signalSemaphoreValueCount = 1, .pSignalSemaphoreValues = &timeline_point, }; VkSubmitInfo submit_info = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pNext = &timeline_submit_info, .commandBufferCount = 1, .pCommandBuffers = &cb->vk, .signalSemaphoreCount = 1, .pSignalSemaphores = &renderer->timeline_semaphore, }; VkResult res = vkQueueSubmit(renderer->dev->queue, 1, &submit_info, NULL); if (res != VK_SUCCESS) { wlr_vk_error("vkQueueSubmit", res); return false; } // NOTE: don't release stage allocations here since they may still be // used for reading. Will be done next frame. return wait_command_buffer(cb, renderer); } struct wlr_vk_format_props *vulkan_format_props_from_drm( struct wlr_vk_device *dev, uint32_t drm_fmt) { for (size_t i = 0u; i < dev->format_prop_count; ++i) { if (dev->format_props[i].format.drm_format == drm_fmt) { return &dev->format_props[i]; } } return NULL; } static bool init_command_buffer(struct wlr_vk_command_buffer *cb, struct wlr_vk_renderer *renderer) { VkResult res; VkCommandBuffer vk_cb = VK_NULL_HANDLE; VkCommandBufferAllocateInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .commandPool = renderer->command_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; res = vkAllocateCommandBuffers(renderer->dev->dev, &cmd_buf_info, &vk_cb); if (res != VK_SUCCESS) { wlr_vk_error("vkAllocateCommandBuffers", res); return false; } *cb = (struct wlr_vk_command_buffer){ .vk = vk_cb, }; return true; } static bool wait_command_buffer(struct wlr_vk_command_buffer *cb, struct wlr_vk_renderer *renderer) { VkResult res; assert(cb->vk != VK_NULL_HANDLE && !cb->recording); VkSemaphoreWaitInfoKHR wait_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_WAIT_INFO_KHR, .semaphoreCount = 1, .pSemaphores = &renderer->timeline_semaphore, .pValues = &cb->timeline_point, }; res = renderer->dev->api.waitSemaphoresKHR(renderer->dev->dev, &wait_info, UINT64_MAX); if (res != VK_SUCCESS) { wlr_vk_error("vkWaitSemaphoresKHR", res); return false; } return true; } static struct wlr_vk_command_buffer *get_command_buffer( struct wlr_vk_renderer *renderer) { VkResult res; uint64_t current_point; res = renderer->dev->api.getSemaphoreCounterValueKHR(renderer->dev->dev, renderer->timeline_semaphore, ¤t_point); if (res != VK_SUCCESS) { wlr_vk_error("vkGetSemaphoreCounterValueKHR", res); return NULL; } // First try to find an existing command buffer which isn't busy struct wlr_vk_command_buffer *unused = NULL; struct wlr_vk_command_buffer *wait = NULL; for (size_t i = 0; i < VULKAN_COMMAND_BUFFERS_CAP; i++) { struct wlr_vk_command_buffer *cb = &renderer->command_buffers[i]; if (cb->vk == VK_NULL_HANDLE) { unused = cb; break; } if (cb->recording) { continue; } if (cb->timeline_point <= current_point) { return cb; } if (wait == NULL || cb->timeline_point < wait->timeline_point) { wait = cb; } } // If there is an unused slot, initialize it if (unused != NULL) { if (!init_command_buffer(unused, renderer)) { return NULL; } return unused; } // Block until a busy command buffer becomes available if (!wait_command_buffer(wait, renderer)) { return NULL; } return wait; } static struct wlr_vk_command_buffer *acquire_command_buffer( struct wlr_vk_renderer *renderer) { struct wlr_vk_command_buffer *cb = get_command_buffer(renderer); if (cb == NULL) { return NULL; } assert(!cb->recording); cb->recording = true; return cb; } static uint64_t end_command_buffer(struct wlr_vk_command_buffer *cb, struct wlr_vk_renderer *renderer) { assert(cb->recording); cb->recording = false; VkResult res = vkEndCommandBuffer(cb->vk); if (res != VK_SUCCESS) { wlr_vk_error("vkEndCommandBuffer", res); return 0; } renderer->timeline_point++; cb->timeline_point = renderer->timeline_point; return cb->timeline_point; } // buffer import static void destroy_render_buffer(struct wlr_vk_render_buffer *buffer) { wl_list_remove(&buffer->link); wlr_addon_finish(&buffer->addon); assert(buffer->renderer->current_render_buffer != buffer); VkDevice dev = buffer->renderer->dev->dev; vkDestroyFramebuffer(dev, buffer->framebuffer, NULL); vkDestroyImageView(dev, buffer->image_view, NULL); vkDestroyImage(dev, buffer->image, NULL); for (size_t i = 0u; i < buffer->mem_count; ++i) { vkFreeMemory(dev, buffer->memories[i], NULL); } free(buffer); } static void handle_render_buffer_destroy(struct wlr_addon *addon) { struct wlr_vk_render_buffer *buffer = wl_container_of(addon, buffer, addon); destroy_render_buffer(buffer); } static struct wlr_addon_interface render_buffer_addon_impl = { .name = "wlr_vk_render_buffer", .destroy = handle_render_buffer_destroy, }; static struct wlr_vk_render_buffer *create_render_buffer( struct wlr_vk_renderer *renderer, struct wlr_buffer *wlr_buffer) { VkResult res; struct wlr_vk_render_buffer *buffer = calloc(1, sizeof(*buffer)); if (buffer == NULL) { wlr_log_errno(WLR_ERROR, "Allocation failed"); return NULL; } buffer->wlr_buffer = wlr_buffer; buffer->renderer = renderer; struct wlr_dmabuf_attributes dmabuf = {0}; if (!wlr_buffer_get_dmabuf(wlr_buffer, &dmabuf)) { goto error_buffer; } wlr_log(WLR_DEBUG, "vulkan create_render_buffer: %.4s, %dx%d", (const char*) &dmabuf.format, dmabuf.width, dmabuf.height); buffer->image = vulkan_import_dmabuf(renderer, &dmabuf, buffer->memories, &buffer->mem_count, true); if (!buffer->image) { goto error_buffer; } VkDevice dev = renderer->dev->dev; const struct wlr_vk_format_props *fmt = vulkan_format_props_from_drm( renderer->dev, dmabuf.format); if (fmt == NULL) { wlr_log(WLR_ERROR, "Unsupported pixel format %"PRIx32 " (%.4s)", dmabuf.format, (const char*) &dmabuf.format); goto error_buffer; } VkImageViewCreateInfo view_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = buffer->image, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = fmt->format.vk_format, .components.r = VK_COMPONENT_SWIZZLE_IDENTITY, .components.g = VK_COMPONENT_SWIZZLE_IDENTITY, .components.b = VK_COMPONENT_SWIZZLE_IDENTITY, .components.a = VK_COMPONENT_SWIZZLE_IDENTITY, .subresourceRange = (VkImageSubresourceRange) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }; res = vkCreateImageView(dev, &view_info, NULL, &buffer->image_view); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateImageView failed", res); goto error_view; } buffer->render_setup = find_or_create_render_setup( renderer, fmt->format.vk_format); if (!buffer->render_setup) { goto error_view; } VkFramebufferCreateInfo fb_info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .attachmentCount = 1u, .pAttachments = &buffer->image_view, .flags = 0u, .width = dmabuf.width, .height = dmabuf.height, .layers = 1u, .renderPass = buffer->render_setup->render_pass, }; res = vkCreateFramebuffer(dev, &fb_info, NULL, &buffer->framebuffer); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateFramebuffer", res); goto error_view; } wlr_addon_init(&buffer->addon, &wlr_buffer->addons, renderer, &render_buffer_addon_impl); wl_list_insert(&renderer->render_buffers, &buffer->link); return buffer; error_view: vkDestroyFramebuffer(dev, buffer->framebuffer, NULL); vkDestroyImageView(dev, buffer->image_view, NULL); vkDestroyImage(dev, buffer->image, NULL); for (size_t i = 0u; i < buffer->mem_count; ++i) { vkFreeMemory(dev, buffer->memories[i], NULL); } error_buffer: wlr_dmabuf_attributes_finish(&dmabuf); free(buffer); return NULL; } static struct wlr_vk_render_buffer *get_render_buffer( struct wlr_vk_renderer *renderer, struct wlr_buffer *wlr_buffer) { struct wlr_addon *addon = wlr_addon_find(&wlr_buffer->addons, renderer, &render_buffer_addon_impl); if (addon == NULL) { return NULL; } struct wlr_vk_render_buffer *buffer = wl_container_of(addon, buffer, addon); return buffer; } // interface implementation static bool vulkan_bind_buffer(struct wlr_renderer *wlr_renderer, struct wlr_buffer *wlr_buffer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); if (renderer->current_render_buffer) { wlr_buffer_unlock(renderer->current_render_buffer->wlr_buffer); renderer->current_render_buffer = NULL; } if (!wlr_buffer) { return true; } struct wlr_vk_render_buffer *buffer = get_render_buffer(renderer, wlr_buffer); if (!buffer) { buffer = create_render_buffer(renderer, wlr_buffer); if (!buffer) { return false; } } wlr_buffer_lock(wlr_buffer); renderer->current_render_buffer = buffer; return true; } static void vulkan_begin(struct wlr_renderer *wlr_renderer, uint32_t width, uint32_t height) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); assert(renderer->current_render_buffer); struct wlr_vk_command_buffer *cb = acquire_command_buffer(renderer); if (cb == NULL) { return; } assert(renderer->current_command_buffer == NULL); renderer->current_command_buffer = cb; VkCommandBufferBeginInfo begin_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, }; vkBeginCommandBuffer(cb->vk, &begin_info); // begin render pass VkFramebuffer fb = renderer->current_render_buffer->framebuffer; VkRect2D rect = {{0, 0}, {width, height}}; renderer->scissor = rect; VkRenderPassBeginInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .renderArea = rect, .renderPass = renderer->current_render_buffer->render_setup->render_pass, .framebuffer = fb, .clearValueCount = 0, }; vkCmdBeginRenderPass(cb->vk, &rp_info, VK_SUBPASS_CONTENTS_INLINE); VkViewport vp = {0.f, 0.f, (float) width, (float) height, 0.f, 1.f}; vkCmdSetViewport(cb->vk, 0, 1, &vp); vkCmdSetScissor(cb->vk, 0, 1, &rect); // Refresh projection matrix. // matrix_projection() assumes a GL coordinate system so we need // to pass WL_OUTPUT_TRANSFORM_FLIPPED_180 to adjust it for vulkan. matrix_projection(renderer->projection, width, height, WL_OUTPUT_TRANSFORM_FLIPPED_180); renderer->render_width = width; renderer->render_height = height; renderer->bound_pipe = VK_NULL_HANDLE; } static void vulkan_end(struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); assert(renderer->current_render_buffer); struct wlr_vk_command_buffer *render_cb = renderer->current_command_buffer; assert(render_cb != NULL); renderer->current_command_buffer = NULL; VkCommandBuffer pre_cb = vulkan_record_stage_cb(renderer); renderer->render_width = 0u; renderer->render_height = 0u; renderer->bound_pipe = VK_NULL_HANDLE; vkCmdEndRenderPass(render_cb->vk); // insert acquire and release barriers for dmabuf-images unsigned barrier_count = wl_list_length(&renderer->foreign_textures) + 1; VkImageMemoryBarrier* acquire_barriers = calloc(barrier_count, sizeof(VkImageMemoryBarrier)); VkImageMemoryBarrier* release_barriers = calloc(barrier_count, sizeof(VkImageMemoryBarrier)); struct wlr_vk_texture *texture, *tmp_tex; unsigned idx = 0; wl_list_for_each_safe(texture, tmp_tex, &renderer->foreign_textures, foreign_link) { VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (!texture->transitioned) { src_layout = VK_IMAGE_LAYOUT_UNDEFINED; texture->transitioned = true; } // acquire acquire_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; acquire_barriers[idx].srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT; acquire_barriers[idx].dstQueueFamilyIndex = renderer->dev->queue_family; acquire_barriers[idx].image = texture->image; acquire_barriers[idx].oldLayout = src_layout; acquire_barriers[idx].newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; acquire_barriers[idx].srcAccessMask = 0u; // ignored anyways acquire_barriers[idx].dstAccessMask = VK_ACCESS_SHADER_READ_BIT; acquire_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; acquire_barriers[idx].subresourceRange.layerCount = 1; acquire_barriers[idx].subresourceRange.levelCount = 1; // releaes release_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; release_barriers[idx].srcQueueFamilyIndex = renderer->dev->queue_family; release_barriers[idx].dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT; release_barriers[idx].image = texture->image; release_barriers[idx].oldLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; release_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL; release_barriers[idx].srcAccessMask = VK_ACCESS_SHADER_READ_BIT; release_barriers[idx].dstAccessMask = 0u; // ignored anyways release_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; release_barriers[idx].subresourceRange.layerCount = 1; release_barriers[idx].subresourceRange.levelCount = 1; ++idx; wl_list_remove(&texture->foreign_link); texture->owned = false; } // also add acquire/release barriers for the current render buffer VkImageLayout src_layout = VK_IMAGE_LAYOUT_GENERAL; if (!renderer->current_render_buffer->transitioned) { src_layout = VK_IMAGE_LAYOUT_PREINITIALIZED; renderer->current_render_buffer->transitioned = true; } // acquire render buffer before rendering acquire_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; acquire_barriers[idx].srcQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT; acquire_barriers[idx].dstQueueFamilyIndex = renderer->dev->queue_family; acquire_barriers[idx].image = renderer->current_render_buffer->image; acquire_barriers[idx].oldLayout = src_layout; acquire_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL; acquire_barriers[idx].srcAccessMask = 0u; // ignored anyways acquire_barriers[idx].dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; acquire_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; acquire_barriers[idx].subresourceRange.layerCount = 1; acquire_barriers[idx].subresourceRange.levelCount = 1; // release render buffer after rendering release_barriers[idx].sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; release_barriers[idx].srcQueueFamilyIndex = renderer->dev->queue_family; release_barriers[idx].dstQueueFamilyIndex = VK_QUEUE_FAMILY_FOREIGN_EXT; release_barriers[idx].image = renderer->current_render_buffer->image; release_barriers[idx].oldLayout = VK_IMAGE_LAYOUT_GENERAL; release_barriers[idx].newLayout = VK_IMAGE_LAYOUT_GENERAL; release_barriers[idx].srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; release_barriers[idx].dstAccessMask = 0u; // ignored anyways release_barriers[idx].subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; release_barriers[idx].subresourceRange.layerCount = 1; release_barriers[idx].subresourceRange.levelCount = 1; ++idx; vkCmdPipelineBarrier(pre_cb, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, barrier_count, acquire_barriers); vkCmdPipelineBarrier(render_cb->vk, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, barrier_count, release_barriers); free(acquire_barriers); free(release_barriers); unsigned submit_count = 0u; VkSubmitInfo submit_infos[2] = {0}; struct wlr_vk_command_buffer *stage_cb = renderer->stage.cb; renderer->stage.cb = NULL; // No semaphores needed here. // We don't need a semaphore from the stage/transfer submission // to the render submissions since they are on the same queue // and we have a renderpass dependency for that. uint64_t stage_timeline_point; VkTimelineSemaphoreSubmitInfoKHR stage_timeline_submit_info; uint64_t stage_wait_timeline_point; VkPipelineStageFlags stage_wait_stage; if (stage_cb != NULL) { stage_timeline_point = end_command_buffer(stage_cb, renderer); if (stage_timeline_point == 0) { return; } stage_timeline_submit_info = (VkTimelineSemaphoreSubmitInfoKHR){ .sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR, .signalSemaphoreValueCount = 1, .pSignalSemaphoreValues = &stage_timeline_point, }; VkSubmitInfo *stage_sub = &submit_infos[submit_count]; stage_sub->sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; stage_sub->pNext = &stage_timeline_submit_info; stage_sub->commandBufferCount = 1u; stage_sub->pCommandBuffers = &pre_cb; ++submit_count; if (renderer->stage.last_timeline_point > 0) { stage_wait_timeline_point = renderer->stage.last_timeline_point; stage_wait_stage = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; stage_sub->waitSemaphoreCount = 1; stage_sub->pWaitSemaphores = &renderer->timeline_semaphore; stage_sub->pWaitDstStageMask = &stage_wait_stage; stage_timeline_submit_info.waitSemaphoreValueCount = 1; stage_timeline_submit_info.pWaitSemaphoreValues = &stage_wait_timeline_point; } renderer->stage.last_timeline_point = stage_timeline_point; } uint64_t render_timeline_point = end_command_buffer(render_cb, renderer); if (render_timeline_point == 0) { return; } VkTimelineSemaphoreSubmitInfoKHR render_timeline_submit_info = { .sType = VK_STRUCTURE_TYPE_TIMELINE_SEMAPHORE_SUBMIT_INFO_KHR, .signalSemaphoreValueCount = 1, .pSignalSemaphoreValues = &render_timeline_point, }; VkSubmitInfo *render_sub = &submit_infos[submit_count]; render_sub->sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; render_sub->pNext = &render_timeline_submit_info; render_sub->pCommandBuffers = &render_cb->vk; render_sub->commandBufferCount = 1u; render_sub->signalSemaphoreCount = 1; render_sub->pSignalSemaphores = &renderer->timeline_semaphore, ++submit_count; VkResult res = vkQueueSubmit(renderer->dev->queue, submit_count, submit_infos, NULL); if (res != VK_SUCCESS) { wlr_vk_error("vkQueueSubmit", res); return; } // sadly this is required due to the current api/rendering model of wlr // ideally we could use gpu and cpu in parallel (_without_ the // implicit synchronization overhead and mess of opengl drivers) if (!wait_command_buffer(render_cb, renderer)) { return; } ++renderer->frame; release_stage_allocations(renderer); // destroy pending textures wl_list_for_each_safe(texture, tmp_tex, &renderer->destroy_textures, destroy_link) { wlr_texture_destroy(&texture->wlr_texture); } wl_list_init(&renderer->destroy_textures); // reset the list } static bool vulkan_render_subtexture_with_matrix(struct wlr_renderer *wlr_renderer, struct wlr_texture *wlr_texture, const struct wlr_fbox *box, const float matrix[static 9], float alpha) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); VkCommandBuffer cb = renderer->current_command_buffer->vk; struct wlr_vk_texture *texture = vulkan_get_texture(wlr_texture); assert(texture->renderer == renderer); if (texture->dmabuf_imported && !texture->owned) { // Store this texture in the list of textures that need to be // acquired before rendering and released after rendering. // We don't do it here immediately since barriers inside // a renderpass are suboptimal (would require additional renderpass // dependency and potentially multiple barriers) and it's // better to issue one barrier for all used textures anyways. texture->owned = true; assert(texture->foreign_link.prev == NULL); assert(texture->foreign_link.next == NULL); wl_list_insert(&renderer->foreign_textures, &texture->foreign_link); } VkPipeline pipe = renderer->current_render_buffer->render_setup->tex_pipe; if (pipe != renderer->bound_pipe) { vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe); renderer->bound_pipe = pipe; } vkCmdBindDescriptorSets(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, renderer->pipe_layout, 0, 1, &texture->ds, 0, NULL); float final_matrix[9]; wlr_matrix_multiply(final_matrix, renderer->projection, matrix); struct vert_pcr_data vert_pcr_data; mat3_to_mat4(final_matrix, vert_pcr_data.mat4); vert_pcr_data.uv_off[0] = box->x / wlr_texture->width; vert_pcr_data.uv_off[1] = box->y / wlr_texture->height; vert_pcr_data.uv_size[0] = box->width / wlr_texture->width; vert_pcr_data.uv_size[1] = box->height / wlr_texture->height; vkCmdPushConstants(cb, renderer->pipe_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, renderer->pipe_layout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float), &alpha); vkCmdDraw(cb, 4, 1, 0, 0); texture->last_used = renderer->frame; return true; } static void vulkan_clear(struct wlr_renderer *wlr_renderer, const float color[static 4]) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); VkCommandBuffer cb = renderer->current_command_buffer->vk; VkClearAttachment att = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .colorAttachment = 0u, // Input color values are given in srgb space, vulkan expects // them in linear space. We explicitly import argb8 render buffers // as srgb, vulkan will convert the input values we give here to // srgb first. // But in other parts of wlroots we just always assume // srgb so that's why we have to convert here. .clearValue.color.float32 = { color_to_linear(color[0]), color_to_linear(color[1]), color_to_linear(color[2]), color[3], // no conversion for alpha }, }; VkClearRect rect = { .rect = renderer->scissor, .layerCount = 1, }; vkCmdClearAttachments(cb, 1, &att, 1, &rect); } static void vulkan_scissor(struct wlr_renderer *wlr_renderer, struct wlr_box *box) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); VkCommandBuffer cb = renderer->current_command_buffer->vk; uint32_t w = renderer->render_width; uint32_t h = renderer->render_height; struct wlr_box dst = {0, 0, w, h}; if (box && !wlr_box_intersection(&dst, box, &dst)) { dst = (struct wlr_box) {0, 0, 0, 0}; // empty } VkRect2D rect = (VkRect2D) {{dst.x, dst.y}, {dst.width, dst.height}}; renderer->scissor = rect; vkCmdSetScissor(cb, 0, 1, &rect); } static const uint32_t *vulkan_get_shm_texture_formats( struct wlr_renderer *wlr_renderer, size_t *len) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); *len = renderer->dev->shm_format_count; return renderer->dev->shm_formats; } static void vulkan_render_quad_with_matrix(struct wlr_renderer *wlr_renderer, const float color[static 4], const float matrix[static 9]) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); VkCommandBuffer cb = renderer->current_command_buffer->vk; VkPipeline pipe = renderer->current_render_buffer->render_setup->quad_pipe; if (pipe != renderer->bound_pipe) { vkCmdBindPipeline(cb, VK_PIPELINE_BIND_POINT_GRAPHICS, pipe); renderer->bound_pipe = pipe; } float final_matrix[9]; wlr_matrix_multiply(final_matrix, renderer->projection, matrix); struct vert_pcr_data vert_pcr_data; mat3_to_mat4(final_matrix, vert_pcr_data.mat4); vert_pcr_data.uv_off[0] = 0.f; vert_pcr_data.uv_off[1] = 0.f; vert_pcr_data.uv_size[0] = 1.f; vert_pcr_data.uv_size[1] = 1.f; // Input color values are given in srgb space, shader expects // them in linear space. The shader does all computation in linear // space and expects in inputs in linear space since it outputs // colors in linear space as well (and vulkan then automatically // does the conversion for out SRGB render targets). // But in other parts of wlroots we just always assume // srgb so that's why we have to convert here. float linear_color[4]; linear_color[0] = color_to_linear(color[0]); linear_color[1] = color_to_linear(color[1]); linear_color[2] = color_to_linear(color[2]); linear_color[3] = color[3]; // no conversion for alpha vkCmdPushConstants(cb, renderer->pipe_layout, VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(vert_pcr_data), &vert_pcr_data); vkCmdPushConstants(cb, renderer->pipe_layout, VK_SHADER_STAGE_FRAGMENT_BIT, sizeof(vert_pcr_data), sizeof(float) * 4, linear_color); vkCmdDraw(cb, 4, 1, 0, 0); } static const struct wlr_drm_format_set *vulkan_get_dmabuf_texture_formats( struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); return &renderer->dev->dmabuf_texture_formats; } static const struct wlr_drm_format_set *vulkan_get_render_formats( struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); return &renderer->dev->dmabuf_render_formats; } static uint32_t vulkan_preferred_read_format( struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); struct wlr_dmabuf_attributes dmabuf = {0}; if (!wlr_buffer_get_dmabuf(renderer->current_render_buffer->wlr_buffer, &dmabuf)) { wlr_log(WLR_ERROR, "vulkan_preferred_read_format: Failed to get dmabuf of current render buffer"); return DRM_FORMAT_INVALID; } return dmabuf.format; } static void vulkan_destroy(struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); struct wlr_vk_device *dev = renderer->dev; if (!dev) { free(renderer); return; } assert(!renderer->current_render_buffer); // stage.cb automatically freed with command pool struct wlr_vk_shared_buffer *buf, *tmp_buf; wl_list_for_each_safe(buf, tmp_buf, &renderer->stage.buffers, link) { shared_buffer_destroy(renderer, buf); } struct wlr_vk_texture *tex, *tex_tmp; wl_list_for_each_safe(tex, tex_tmp, &renderer->textures, link) { vulkan_texture_destroy(tex); } struct wlr_vk_render_buffer *render_buffer, *render_buffer_tmp; wl_list_for_each_safe(render_buffer, render_buffer_tmp, &renderer->render_buffers, link) { destroy_render_buffer(render_buffer); } struct wlr_vk_render_format_setup *setup, *tmp_setup; wl_list_for_each_safe(setup, tmp_setup, &renderer->render_format_setups, link) { destroy_render_format_setup(renderer, setup); } struct wlr_vk_descriptor_pool *pool, *tmp_pool; wl_list_for_each_safe(pool, tmp_pool, &renderer->descriptor_pools, link) { vkDestroyDescriptorPool(dev->dev, pool->pool, NULL); free(pool); } vkDestroyShaderModule(dev->dev, renderer->vert_module, NULL); vkDestroyShaderModule(dev->dev, renderer->tex_frag_module, NULL); vkDestroyShaderModule(dev->dev, renderer->quad_frag_module, NULL); vkDestroySemaphore(dev->dev, renderer->timeline_semaphore, NULL); vkDestroyPipelineLayout(dev->dev, renderer->pipe_layout, NULL); vkDestroyDescriptorSetLayout(dev->dev, renderer->ds_layout, NULL); vkDestroySampler(dev->dev, renderer->sampler, NULL); vkDestroyCommandPool(dev->dev, renderer->command_pool, NULL); if (renderer->read_pixels_cache.initialized) { vkFreeMemory(dev->dev, renderer->read_pixels_cache.dst_img_memory, NULL); vkDestroyImage(dev->dev, renderer->read_pixels_cache.dst_image, NULL); } struct wlr_vk_instance *ini = dev->instance; vulkan_device_destroy(dev); vulkan_instance_destroy(ini); free(renderer); } static bool vulkan_read_pixels(struct wlr_renderer *wlr_renderer, uint32_t drm_format, uint32_t stride, uint32_t width, uint32_t height, uint32_t src_x, uint32_t src_y, uint32_t dst_x, uint32_t dst_y, void *data) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(wlr_renderer); VkDevice dev = vk_renderer->dev->dev; VkImage src_image = vk_renderer->current_render_buffer->image; const struct wlr_pixel_format_info *pixel_format_info = drm_get_pixel_format_info(drm_format); if (!pixel_format_info) { wlr_log(WLR_ERROR, "vulkan_read_pixels: could not find pixel format info " "for DRM format 0x%08x", drm_format); return false; } const struct wlr_vk_format *wlr_vk_format = vulkan_get_format_from_drm(drm_format); if (!wlr_vk_format) { wlr_log(WLR_ERROR, "vulkan_read_pixels: no vulkan format " "matching drm format 0x%08x available", drm_format); return false; } VkFormat dst_format = wlr_vk_format->vk_format; VkFormat src_format = vk_renderer->current_render_buffer->render_setup->render_format; VkFormatProperties dst_format_props = {0}, src_format_props = {0}; vkGetPhysicalDeviceFormatProperties(vk_renderer->dev->phdev, dst_format, &dst_format_props); vkGetPhysicalDeviceFormatProperties(vk_renderer->dev->phdev, src_format, &src_format_props); bool blit_supported = src_format_props.optimalTilingFeatures & VK_FORMAT_FEATURE_BLIT_SRC_BIT && dst_format_props.linearTilingFeatures & VK_FORMAT_FEATURE_BLIT_DST_BIT; if (!blit_supported && src_format != dst_format) { wlr_log(WLR_ERROR, "vulkan_read_pixels: blit unsupported and no manual " "conversion available from src to dst format."); return false; } VkResult res; VkImage dst_image; VkDeviceMemory dst_img_memory; bool use_cached = vk_renderer->read_pixels_cache.initialized && vk_renderer->read_pixels_cache.drm_format == drm_format && vk_renderer->read_pixels_cache.width == width && vk_renderer->read_pixels_cache.height == height; if (use_cached) { dst_image = vk_renderer->read_pixels_cache.dst_image; dst_img_memory = vk_renderer->read_pixels_cache.dst_img_memory; } else { VkImageCreateInfo image_create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .imageType = VK_IMAGE_TYPE_2D, .format = dst_format, .extent.width = width, .extent.height = height, .extent.depth = 1, .arrayLayers = 1, .mipLevels = 1, .initialLayout = VK_IMAGE_LAYOUT_UNDEFINED, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_LINEAR, .usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT }; res = vkCreateImage(dev, &image_create_info, NULL, &dst_image); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateImage", res); return false; } VkMemoryRequirements mem_reqs; vkGetImageMemoryRequirements(dev, dst_image, &mem_reqs); int mem_type = vulkan_find_mem_type(vk_renderer->dev, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT, mem_reqs.memoryTypeBits); if (mem_type < 0) { wlr_log(WLR_ERROR, "vulkan_read_pixels: could not find adequate memory type"); goto destroy_image; } VkMemoryAllocateInfo mem_alloc_info = { .sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO, }; mem_alloc_info.allocationSize = mem_reqs.size; mem_alloc_info.memoryTypeIndex = mem_type; res = vkAllocateMemory(dev, &mem_alloc_info, NULL, &dst_img_memory); if (res != VK_SUCCESS) { wlr_vk_error("vkAllocateMemory", res); goto destroy_image; } res = vkBindImageMemory(dev, dst_image, dst_img_memory, 0); if (res != VK_SUCCESS) { wlr_vk_error("vkBindImageMemory", res); goto free_memory; } if (vk_renderer->read_pixels_cache.initialized) { vkFreeMemory(dev, vk_renderer->read_pixels_cache.dst_img_memory, NULL); vkDestroyImage(dev, vk_renderer->read_pixels_cache.dst_image, NULL); } vk_renderer->read_pixels_cache.initialized = true; vk_renderer->read_pixels_cache.drm_format = drm_format; vk_renderer->read_pixels_cache.dst_image = dst_image; vk_renderer->read_pixels_cache.dst_img_memory = dst_img_memory; vk_renderer->read_pixels_cache.width = width; vk_renderer->read_pixels_cache.height = height; } VkCommandBuffer cb = vulkan_record_stage_cb(vk_renderer); vulkan_change_layout(cb, dst_image, VK_IMAGE_LAYOUT_UNDEFINED, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT); vulkan_change_layout(cb, src_image, VK_IMAGE_LAYOUT_GENERAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_MEMORY_READ_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_READ_BIT); if (blit_supported) { VkOffset3D blit_size = { .x = width, .y = height, .z = 1 }; VkImageBlit image_blit_region = { .srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .srcSubresource.layerCount = 1, .srcOffsets[0] = { .x = src_x, .y = src_y, }, .srcOffsets[1] = blit_size, .dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .dstSubresource.layerCount = 1, .dstOffsets[1] = blit_size }; vkCmdBlitImage(cb, src_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_blit_region, VK_FILTER_NEAREST); } else { wlr_log(WLR_DEBUG, "vulkan_read_pixels: blit unsupported, falling back to vkCmdCopyImage."); VkImageCopy image_region = { .srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .srcSubresource.layerCount = 1, .srcOffset = { .x = src_x, .y = src_y, }, .dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .dstSubresource.layerCount = 1, .extent = { .width = width, .height = height, .depth = 1, } }; vkCmdCopyImage(cb, src_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &image_region); } vulkan_change_layout(cb, dst_image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_WRITE_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_PIPELINE_STAGE_TRANSFER_BIT, 0); vulkan_change_layout(cb, src_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_TRANSFER_READ_BIT, VK_IMAGE_LAYOUT_GENERAL, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_ACCESS_MEMORY_READ_BIT); if (!vulkan_submit_stage_wait(vk_renderer)) { return false; } VkImageSubresource img_sub_res = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .arrayLayer = 0, .mipLevel = 0 }; VkSubresourceLayout img_sub_layout; vkGetImageSubresourceLayout(dev, dst_image, &img_sub_res, &img_sub_layout); void *v; res = vkMapMemory(dev, dst_img_memory, 0, VK_WHOLE_SIZE, 0, &v); if (res != VK_SUCCESS) { wlr_vk_error("vkMapMemory", res); return false; } const char *d = (const char *)v + img_sub_layout.offset; unsigned char *p = (unsigned char *)data + dst_y * stride; uint32_t bpp = pixel_format_info->bpp; uint32_t pack_stride = img_sub_layout.rowPitch; if (pack_stride == stride && dst_x == 0) { memcpy(p, d, height * stride); } else { for (size_t i = 0; i < height; ++i) { memcpy(p + i * stride + dst_x * bpp / 8, d + i * pack_stride, width * bpp / 8); } } vkUnmapMemory(dev, dst_img_memory); // Don't need to free anything else, since memory and image are cached return true; free_memory: vkFreeMemory(dev, dst_img_memory, NULL); destroy_image: vkDestroyImage(dev, dst_image, NULL); return false; } static int vulkan_get_drm_fd(struct wlr_renderer *wlr_renderer) { struct wlr_vk_renderer *renderer = vulkan_get_renderer(wlr_renderer); return renderer->dev->drm_fd; } static uint32_t vulkan_get_render_buffer_caps(struct wlr_renderer *wlr_renderer) { return WLR_BUFFER_CAP_DMABUF; } static const struct wlr_renderer_impl renderer_impl = { .bind_buffer = vulkan_bind_buffer, .begin = vulkan_begin, .end = vulkan_end, .clear = vulkan_clear, .scissor = vulkan_scissor, .render_subtexture_with_matrix = vulkan_render_subtexture_with_matrix, .render_quad_with_matrix = vulkan_render_quad_with_matrix, .get_shm_texture_formats = vulkan_get_shm_texture_formats, .get_dmabuf_texture_formats = vulkan_get_dmabuf_texture_formats, .get_render_formats = vulkan_get_render_formats, .preferred_read_format = vulkan_preferred_read_format, .read_pixels = vulkan_read_pixels, .destroy = vulkan_destroy, .get_drm_fd = vulkan_get_drm_fd, .get_render_buffer_caps = vulkan_get_render_buffer_caps, .texture_from_buffer = vulkan_texture_from_buffer, }; // Initializes the VkDescriptorSetLayout and VkPipelineLayout needed // for the texture rendering pipeline using the given VkSampler. static bool init_tex_layouts(struct wlr_vk_renderer *renderer, VkSampler tex_sampler, VkDescriptorSetLayout *out_ds_layout, VkPipelineLayout *out_pipe_layout) { VkResult res; VkDevice dev = renderer->dev->dev; // layouts // descriptor set VkDescriptorSetLayoutBinding ds_binding = { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = &tex_sampler, }; VkDescriptorSetLayoutCreateInfo ds_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .bindingCount = 1, .pBindings = &ds_binding, }; res = vkCreateDescriptorSetLayout(dev, &ds_info, NULL, out_ds_layout); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateDescriptorSetLayout", res); return false; } // pipeline layout VkPushConstantRange pc_ranges[2] = { { .size = sizeof(struct vert_pcr_data), .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, }, { .offset = pc_ranges[0].size, .size = sizeof(float) * 4, // alpha or color .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, }, }; VkPipelineLayoutCreateInfo pl_info = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .setLayoutCount = 1, .pSetLayouts = out_ds_layout, .pushConstantRangeCount = 2, .pPushConstantRanges = pc_ranges, }; res = vkCreatePipelineLayout(dev, &pl_info, NULL, out_pipe_layout); if (res != VK_SUCCESS) { wlr_vk_error("vkCreatePipelineLayout", res); return false; } return true; } // Initializes the pipeline for rendering textures and using the given // VkRenderPass and VkPipelineLayout. static bool init_tex_pipeline(struct wlr_vk_renderer *renderer, VkRenderPass rp, VkPipelineLayout pipe_layout, VkPipeline *pipe) { VkResult res; VkDevice dev = renderer->dev->dev; // shaders VkPipelineShaderStageCreateInfo tex_stages[2] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = renderer->vert_module, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = renderer->tex_frag_module, .pName = "main", }, }; // info VkPipelineInputAssemblyStateCreateInfo assembly = { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, }; VkPipelineRasterizationStateCreateInfo rasterization = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .lineWidth = 1.f, }; VkPipelineColorBlendAttachmentState blend_attachment = { .blendEnable = true, // we generally work with pre-multiplied alpha .srcColorBlendFactor = VK_BLEND_FACTOR_ONE, .dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, .colorBlendOp = VK_BLEND_OP_ADD, .srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE, .dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE, .alphaBlendOp = VK_BLEND_OP_ADD, .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, }; VkPipelineColorBlendStateCreateInfo blend = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = &blend_attachment, }; VkPipelineMultisampleStateCreateInfo multisample = { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT, }; VkPipelineViewportStateCreateInfo viewport = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }; VkDynamicState dynStates[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }; VkPipelineDynamicStateCreateInfo dynamic = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .pDynamicStates = dynStates, .dynamicStateCount = 2, }; VkPipelineVertexInputStateCreateInfo vertex = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, }; VkGraphicsPipelineCreateInfo pinfo = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .layout = pipe_layout, .renderPass = rp, .subpass = 0, .stageCount = 2, .pStages = tex_stages, .pInputAssemblyState = &assembly, .pRasterizationState = &rasterization, .pColorBlendState = &blend, .pMultisampleState = &multisample, .pViewportState = &viewport, .pDynamicState = &dynamic, .pVertexInputState = &vertex, }; // NOTE: use could use a cache here for faster loading // store it somewhere like $XDG_CACHE_HOME/wlroots/vk_pipe_cache VkPipelineCache cache = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(dev, cache, 1, &pinfo, NULL, pipe); if (res != VK_SUCCESS) { wlr_vk_error("failed to create vulkan pipelines:", res); return false; } return true; } // Creates static render data, such as sampler, layouts and shader modules // for the given rednerer. // Cleanup is done by destroying the renderer. static bool init_static_render_data(struct wlr_vk_renderer *renderer) { VkResult res; VkDevice dev = renderer->dev->dev; // default sampler (non ycbcr) VkSamplerCreateInfo sampler_info = { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .magFilter = VK_FILTER_LINEAR, .minFilter = VK_FILTER_LINEAR, .mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST, .addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT, .addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT, .addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT, .maxAnisotropy = 1.f, .minLod = 0.f, .maxLod = 0.25f, .borderColor = VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK, }; res = vkCreateSampler(dev, &sampler_info, NULL, &renderer->sampler); if (res != VK_SUCCESS) { wlr_vk_error("Failed to create sampler", res); return false; } if (!init_tex_layouts(renderer, renderer->sampler, &renderer->ds_layout, &renderer->pipe_layout)) { return false; } // load vert module and tex frag module since they are needed to // initialize the tex pipeline VkShaderModuleCreateInfo sinfo = { .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = sizeof(common_vert_data), .pCode = common_vert_data, }; res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->vert_module); if (res != VK_SUCCESS) { wlr_vk_error("Failed to create vertex shader module", res); return false; } // tex frag sinfo = (VkShaderModuleCreateInfo){ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = sizeof(texture_frag_data), .pCode = texture_frag_data, }; res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->tex_frag_module); if (res != VK_SUCCESS) { wlr_vk_error("Failed to create tex fragment shader module", res); return false; } // quad frag sinfo = (VkShaderModuleCreateInfo){ .sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO, .codeSize = sizeof(quad_frag_data), .pCode = quad_frag_data, }; res = vkCreateShaderModule(dev, &sinfo, NULL, &renderer->quad_frag_module); if (res != VK_SUCCESS) { wlr_vk_error("Failed to create quad fragment shader module", res); return false; } return true; } static struct wlr_vk_render_format_setup *find_or_create_render_setup( struct wlr_vk_renderer *renderer, VkFormat format) { struct wlr_vk_render_format_setup *setup; wl_list_for_each(setup, &renderer->render_format_setups, link) { if (setup->render_format == format) { return setup; } } setup = calloc(1u, sizeof(*setup)); if (!setup) { wlr_log(WLR_ERROR, "Allocation failed"); return NULL; } setup->render_format = format; // util VkDevice dev = renderer->dev->dev; VkResult res; VkAttachmentDescription attachment = { .format = format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_GENERAL, .finalLayout = VK_IMAGE_LAYOUT_GENERAL, }; VkAttachmentReference color_ref = { .attachment = 0u, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }; VkSubpassDescription subpass = { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .colorAttachmentCount = 1, .pColorAttachments = &color_ref, }; VkSubpassDependency deps[2] = { { .srcSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_HOST_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, .srcAccessMask = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dstSubpass = 0, .dstStageMask = VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, .dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_SHADER_READ_BIT, }, { .srcSubpass = 0, .srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dstSubpass = VK_SUBPASS_EXTERNAL, .dstStageMask = VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_HOST_BIT | VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT, }, }; VkRenderPassCreateInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .attachmentCount = 1, .pAttachments = &attachment, .subpassCount = 1, .pSubpasses = &subpass, .dependencyCount = 2u, .pDependencies = deps, }; res = vkCreateRenderPass(dev, &rp_info, NULL, &setup->render_pass); if (res != VK_SUCCESS) { wlr_vk_error("Failed to create render pass", res); free(setup); return NULL; } if (!init_tex_pipeline(renderer, setup->render_pass, renderer->pipe_layout, &setup->tex_pipe)) { goto error; } VkPipelineShaderStageCreateInfo quad_stages[2] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_VERTEX_BIT, .module = renderer->vert_module, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_FRAGMENT_BIT, .module = renderer->quad_frag_module, .pName = "main", }, }; // info VkPipelineInputAssemblyStateCreateInfo assembly = { .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN, }; VkPipelineRasterizationStateCreateInfo rasterization = { .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO, .polygonMode = VK_POLYGON_MODE_FILL, .cullMode = VK_CULL_MODE_NONE, .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE, .lineWidth = 1.f, }; VkPipelineColorBlendAttachmentState blend_attachment = { .blendEnable = true, .srcColorBlendFactor = VK_BLEND_FACTOR_ONE, .dstColorBlendFactor = VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA, .colorBlendOp = VK_BLEND_OP_ADD, .srcAlphaBlendFactor = VK_BLEND_FACTOR_ONE, .dstAlphaBlendFactor = VK_BLEND_FACTOR_ONE, .alphaBlendOp = VK_BLEND_OP_ADD, .colorWriteMask = VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT, }; VkPipelineColorBlendStateCreateInfo blend = { .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO, .attachmentCount = 1, .pAttachments = &blend_attachment, }; VkPipelineMultisampleStateCreateInfo multisample = { .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO, .rasterizationSamples = VK_SAMPLE_COUNT_1_BIT, }; VkPipelineViewportStateCreateInfo viewport = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO, .viewportCount = 1, .scissorCount = 1, }; VkDynamicState dynStates[2] = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR, }; VkPipelineDynamicStateCreateInfo dynamic = { .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO, .pDynamicStates = dynStates, .dynamicStateCount = 2, }; VkPipelineVertexInputStateCreateInfo vertex = { .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO, }; VkGraphicsPipelineCreateInfo pinfo = { .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO, .layout = renderer->pipe_layout, .renderPass = setup->render_pass, .subpass = 0, .stageCount = 2, .pStages = quad_stages, .pInputAssemblyState = &assembly, .pRasterizationState = &rasterization, .pColorBlendState = &blend, .pMultisampleState = &multisample, .pViewportState = &viewport, .pDynamicState = &dynamic, .pVertexInputState = &vertex, }; // NOTE: use could use a cache here for faster loading // store it somewhere like $XDG_CACHE_HOME/wlroots/vk_pipe_cache.bin VkPipelineCache cache = VK_NULL_HANDLE; res = vkCreateGraphicsPipelines(dev, cache, 1, &pinfo, NULL, &setup->quad_pipe); if (res != VK_SUCCESS) { wlr_log(WLR_ERROR, "failed to create vulkan quad pipeline: %d", res); goto error; } wl_list_insert(&renderer->render_format_setups, &setup->link); return setup; error: destroy_render_format_setup(renderer, setup); return NULL; } struct wlr_renderer *vulkan_renderer_create_for_device(struct wlr_vk_device *dev) { struct wlr_vk_renderer *renderer; VkResult res; if (!(renderer = calloc(1, sizeof(*renderer)))) { wlr_log_errno(WLR_ERROR, "failed to allocate wlr_vk_renderer"); return NULL; } renderer->dev = dev; wlr_renderer_init(&renderer->wlr_renderer, &renderer_impl); wl_list_init(&renderer->stage.buffers); wl_list_init(&renderer->destroy_textures); wl_list_init(&renderer->foreign_textures); wl_list_init(&renderer->textures); wl_list_init(&renderer->descriptor_pools); wl_list_init(&renderer->render_format_setups); wl_list_init(&renderer->render_buffers); if (!init_static_render_data(renderer)) { goto error; } // command pool VkCommandPoolCreateInfo cpool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT, .queueFamilyIndex = dev->queue_family, }; res = vkCreateCommandPool(dev->dev, &cpool_info, NULL, &renderer->command_pool); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateCommandPool", res); goto error; } VkSemaphoreTypeCreateInfoKHR semaphore_type_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_TYPE_CREATE_INFO_KHR, .semaphoreType = VK_SEMAPHORE_TYPE_TIMELINE_KHR, .initialValue = 0, }; VkSemaphoreCreateInfo semaphore_info = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = &semaphore_type_info, }; res = vkCreateSemaphore(dev->dev, &semaphore_info, NULL, &renderer->timeline_semaphore); if (res != VK_SUCCESS) { wlr_vk_error("vkCreateSemaphore", res); goto error; } return &renderer->wlr_renderer; error: vulkan_destroy(&renderer->wlr_renderer); return NULL; } struct wlr_renderer *wlr_vk_renderer_create_with_drm_fd(int drm_fd) { wlr_log(WLR_INFO, "The vulkan renderer is only experimental and " "not expected to be ready for daily use"); // NOTE: we could add functionality to allow the compositor passing its // name and version to this function. Just use dummies until then, // shouldn't be relevant to the driver anyways struct wlr_vk_instance *ini = vulkan_instance_create(default_debug); if (!ini) { wlr_log(WLR_ERROR, "creating vulkan instance for renderer failed"); return NULL; } VkPhysicalDevice phdev = vulkan_find_drm_phdev(ini, drm_fd); if (!phdev) { // We rather fail here than doing some guesswork wlr_log(WLR_ERROR, "Could not match drm and vulkan device"); return NULL; } // queue families uint32_t qfam_count; vkGetPhysicalDeviceQueueFamilyProperties(phdev, &qfam_count, NULL); VkQueueFamilyProperties queue_props[qfam_count]; vkGetPhysicalDeviceQueueFamilyProperties(phdev, &qfam_count, queue_props); struct wlr_vk_device *dev = vulkan_device_create(ini, phdev); if (!dev) { wlr_log(WLR_ERROR, "Failed to create vulkan device"); vulkan_instance_destroy(ini); return NULL; } // We duplicate it so it's not closed while we still need it. dev->drm_fd = fcntl(drm_fd, F_DUPFD_CLOEXEC, 0); if (dev->drm_fd < 0) { wlr_log_errno(WLR_ERROR, "fcntl(F_DUPFD_CLOEXEC) failed"); vulkan_device_destroy(dev); vulkan_instance_destroy(ini); return NULL; } return vulkan_renderer_create_for_device(dev); } VkInstance wlr_vk_renderer_get_instance(struct wlr_renderer *renderer) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(renderer); return vk_renderer->dev->instance->instance; } VkPhysicalDevice wlr_vk_renderer_get_physical_device(struct wlr_renderer *renderer) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(renderer); return vk_renderer->dev->phdev; } VkDevice wlr_vk_renderer_get_device(struct wlr_renderer *renderer) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(renderer); return vk_renderer->dev->dev; } uint32_t wlr_vk_renderer_get_queue_family(struct wlr_renderer *renderer) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(renderer); return vk_renderer->dev->queue_family; } void wlr_vk_renderer_get_current_image_attribs(struct wlr_renderer *renderer, struct wlr_vk_image_attribs *attribs) { struct wlr_vk_renderer *vk_renderer = vulkan_get_renderer(renderer); attribs->image = vk_renderer->current_render_buffer->image; attribs->format = vk_renderer->current_render_buffer->render_setup->render_format; attribs->layout = VK_IMAGE_LAYOUT_UNDEFINED; }