mirror of
https://github.com/hyprwm/wlroots-hyprland.git
synced 2025-01-24 23:49:49 +01:00
f22a5d1704
The Wayland protocol specifies output transform rotations to be counterclockwise and applied to the surface. Previously, wlroots copied Weston and incorrectly made rotations act clockwise on surfaces. This commit fixes that. This change will break compositors which expect transform rotations to be clockwise, and the rare applications that make use of surface transforms.
250 lines
7.4 KiB
C
250 lines
7.4 KiB
C
#include <assert.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <wlr/types/wlr_box.h>
|
|
#include <wlr/util/region.h>
|
|
|
|
void wlr_region_scale(pixman_region32_t *dst, pixman_region32_t *src,
|
|
float scale) {
|
|
if (scale == 1) {
|
|
pixman_region32_copy(dst, src);
|
|
return;
|
|
}
|
|
|
|
int nrects;
|
|
pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects);
|
|
|
|
pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t));
|
|
if (dst_rects == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < nrects; ++i) {
|
|
dst_rects[i].x1 = floor(src_rects[i].x1 * scale);
|
|
dst_rects[i].x2 = ceil(src_rects[i].x2 * scale);
|
|
dst_rects[i].y1 = floor(src_rects[i].y1 * scale);
|
|
dst_rects[i].y2 = ceil(src_rects[i].y2 * scale);
|
|
}
|
|
|
|
pixman_region32_fini(dst);
|
|
pixman_region32_init_rects(dst, dst_rects, nrects);
|
|
free(dst_rects);
|
|
}
|
|
|
|
void wlr_region_transform(pixman_region32_t *dst, pixman_region32_t *src,
|
|
enum wl_output_transform transform, int width, int height) {
|
|
if (transform == WL_OUTPUT_TRANSFORM_NORMAL) {
|
|
pixman_region32_copy(dst, src);
|
|
return;
|
|
}
|
|
|
|
int nrects;
|
|
pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects);
|
|
|
|
pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t));
|
|
if (dst_rects == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < nrects; ++i) {
|
|
switch (transform) {
|
|
case WL_OUTPUT_TRANSFORM_NORMAL:
|
|
dst_rects[i].x1 = src_rects[i].x1;
|
|
dst_rects[i].y1 = src_rects[i].y1;
|
|
dst_rects[i].x2 = src_rects[i].x2;
|
|
dst_rects[i].y2 = src_rects[i].y2;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_90:
|
|
dst_rects[i].x1 = height - src_rects[i].y2;
|
|
dst_rects[i].y1 = src_rects[i].x1;
|
|
dst_rects[i].x2 = height - src_rects[i].y1;
|
|
dst_rects[i].y2 = src_rects[i].x2;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_180:
|
|
dst_rects[i].x1 = width - src_rects[i].x2;
|
|
dst_rects[i].y1 = height - src_rects[i].y2;
|
|
dst_rects[i].x2 = width - src_rects[i].x1;
|
|
dst_rects[i].y2 = height - src_rects[i].y1;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_270:
|
|
dst_rects[i].x1 = src_rects[i].y1;
|
|
dst_rects[i].y1 = width - src_rects[i].x2;
|
|
dst_rects[i].x2 = src_rects[i].y2;
|
|
dst_rects[i].y2 = width - src_rects[i].x1;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED:
|
|
dst_rects[i].x1 = width - src_rects[i].x2;
|
|
dst_rects[i].y1 = src_rects[i].y1;
|
|
dst_rects[i].x2 = width - src_rects[i].x1;
|
|
dst_rects[i].y2 = src_rects[i].y2;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
|
|
dst_rects[i].x1 = src_rects[i].y1;
|
|
dst_rects[i].y1 = src_rects[i].x1;
|
|
dst_rects[i].x2 = src_rects[i].y2;
|
|
dst_rects[i].y2 = src_rects[i].x2;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
|
|
dst_rects[i].x1 = src_rects[i].x1;
|
|
dst_rects[i].y1 = height - src_rects[i].y2;
|
|
dst_rects[i].x2 = src_rects[i].x2;
|
|
dst_rects[i].y2 = height - src_rects[i].y1;
|
|
break;
|
|
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
|
|
dst_rects[i].x1 = height - src_rects[i].y2;
|
|
dst_rects[i].y1 = width - src_rects[i].x2;
|
|
dst_rects[i].x2 = height - src_rects[i].y1;
|
|
dst_rects[i].y2 = width - src_rects[i].x1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
pixman_region32_fini(dst);
|
|
pixman_region32_init_rects(dst, dst_rects, nrects);
|
|
free(dst_rects);
|
|
}
|
|
|
|
void wlr_region_expand(pixman_region32_t *dst, pixman_region32_t *src,
|
|
int distance) {
|
|
if (distance == 0) {
|
|
pixman_region32_copy(dst, src);
|
|
return;
|
|
}
|
|
|
|
int nrects;
|
|
pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects);
|
|
|
|
pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t));
|
|
if (dst_rects == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < nrects; ++i) {
|
|
dst_rects[i].x1 = src_rects[i].x1 - distance;
|
|
dst_rects[i].x2 = src_rects[i].x2 + distance;
|
|
dst_rects[i].y1 = src_rects[i].y1 - distance;
|
|
dst_rects[i].y2 = src_rects[i].y2 + distance;
|
|
}
|
|
|
|
pixman_region32_fini(dst);
|
|
pixman_region32_init_rects(dst, dst_rects, nrects);
|
|
free(dst_rects);
|
|
}
|
|
|
|
void wlr_region_rotated_bounds(pixman_region32_t *dst, pixman_region32_t *src,
|
|
float rotation, int ox, int oy) {
|
|
if (rotation == 0) {
|
|
pixman_region32_copy(dst, src);
|
|
return;
|
|
}
|
|
|
|
int nrects;
|
|
pixman_box32_t *src_rects = pixman_region32_rectangles(src, &nrects);
|
|
|
|
pixman_box32_t *dst_rects = malloc(nrects * sizeof(pixman_box32_t));
|
|
if (dst_rects == NULL) {
|
|
return;
|
|
}
|
|
|
|
for (int i = 0; i < nrects; ++i) {
|
|
double x1 = src_rects[i].x1 - ox;
|
|
double y1 = src_rects[i].y1 - oy;
|
|
double x2 = src_rects[i].x2 - ox;
|
|
double y2 = src_rects[i].y2 - oy;
|
|
|
|
double rx1 = x1 * cos(rotation) - y1 * sin(rotation);
|
|
double ry1 = x1 * sin(rotation) + y1 * cos(rotation);
|
|
|
|
double rx2 = x2 * cos(rotation) - y1 * sin(rotation);
|
|
double ry2 = x2 * sin(rotation) + y1 * cos(rotation);
|
|
|
|
double rx3 = x2 * cos(rotation) - y2 * sin(rotation);
|
|
double ry3 = x2 * sin(rotation) + y2 * cos(rotation);
|
|
|
|
double rx4 = x1 * cos(rotation) - y2 * sin(rotation);
|
|
double ry4 = x1 * sin(rotation) + y2 * cos(rotation);
|
|
|
|
x1 = fmin(fmin(rx1, rx2), fmin(rx3, rx4));
|
|
y1 = fmin(fmin(ry1, ry2), fmin(ry3, ry4));
|
|
x2 = fmax(fmax(rx1, rx2), fmax(rx3, rx4));
|
|
y2 = fmax(fmax(ry1, ry2), fmax(ry3, ry4));
|
|
|
|
dst_rects[i].x1 = floor(ox + x1);
|
|
dst_rects[i].x2 = ceil(ox + x2);
|
|
dst_rects[i].y1 = floor(oy + y1);
|
|
dst_rects[i].y2 = ceil(oy + y2);
|
|
}
|
|
|
|
pixman_region32_fini(dst);
|
|
pixman_region32_init_rects(dst, dst_rects, nrects);
|
|
free(dst_rects);
|
|
}
|
|
|
|
static void region_confine(pixman_region32_t *region, double x1, double y1, double x2,
|
|
double y2, double *x2_out, double *y2_out, pixman_box32_t box) {
|
|
double x_clamped = fmax(fmin(x2, box.x2 - 1), box.x1);
|
|
double y_clamped = fmax(fmin(y2, box.y2 - 1), box.y1);
|
|
|
|
// If the target coordinates are above box.{x,y}2 - 1, but less than
|
|
// box.{x,y}2, then they are still within the box.
|
|
if (floor(x_clamped) == floor(x2) && floor(y_clamped) == floor(y2)) {
|
|
*x2_out = x2;
|
|
*y2_out = y2;
|
|
return;
|
|
}
|
|
|
|
double dx = x2 - x1;
|
|
double dy = y2 - y1;
|
|
|
|
// We use fabs to avoid negative zeroes and thus avoid a bug
|
|
// with negative infinity.
|
|
double delta = fmin(fabs(x_clamped - x1) / fabs(dx), fabs(y_clamped - y1) / fabs(dy));
|
|
|
|
// We clamp it again due to precision errors.
|
|
double x = fmax(fmin(delta * dx + x1, box.x2 - 1), box.x1);
|
|
double y = fmax(fmin(delta * dy + y1, box.y2 - 1), box.y1);
|
|
|
|
// Go one unit past the boundary to find an adjacent box.
|
|
int x_ext = floor(x) + (dx == 0 ? 0 : dx > 0 ? 1 : -1);
|
|
int y_ext = floor(y) + (dy == 0 ? 0 : dy > 0 ? 1 : -1);
|
|
|
|
if (pixman_region32_contains_point(region, x_ext, y_ext, &box)) {
|
|
return region_confine(region, x1, y1, x2, y2, x2_out, y2_out, box);
|
|
} else if (dx == 0 || dy == 0) {
|
|
*x2_out = x;
|
|
*y2_out = y;
|
|
} else {
|
|
bool bordering_x = x == box.x1 || x == box.x2 - 1;
|
|
bool bordering_y = y == box.y1 || y == box.y2 - 1;
|
|
|
|
if (bordering_x == bordering_y) {
|
|
double x2_potential, y2_potential;
|
|
double tmp1, tmp2;
|
|
region_confine(region, x, y, x, y2, &tmp1, &y2_potential, box);
|
|
region_confine(region, x, y, x2, y, &x2_potential, &tmp2, box);
|
|
if (fabs(x2_potential - x) > fabs(y2_potential - y)) {
|
|
*x2_out = x2_potential;
|
|
*y2_out = y;
|
|
} else {
|
|
*x2_out = x;
|
|
*y2_out = y2_potential;
|
|
}
|
|
} else if (bordering_x) {
|
|
return region_confine(region, x, y, x, y2, x2_out, y2_out, box);
|
|
} else if (bordering_y) {
|
|
return region_confine(region, x, y, x2, y, x2_out, y2_out, box);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool wlr_region_confine(pixman_region32_t *region, double x1, double y1, double x2,
|
|
double y2, double *x2_out, double *y2_out) {
|
|
pixman_box32_t box;
|
|
if (pixman_region32_contains_point(region, floor(x1), floor(y1), &box)) {
|
|
region_confine(region, x1, y1, x2, y2, x2_out, y2_out, box);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|