Now that we have our own wl_drm implementation, there's no reason
to provide custom renderer hooks to init a wl_display in the
interface. We can just initialize the wl_display generically,
depending on the renderer capabilities.
Khronos refers to extensions with their namespace as a prefix in
uppercase. Change our naming to align with Khronos conventions.
This also makes grepping easier.
Khronos refers to extensions with their namespace as a prefix in
uppercase. Change our naming to align with Khronos conventions.
This also makes grepping easier.
Custom backends and renderers need to implement
wlr_backend_impl.get_buffer_caps and
wlr_renderer_impl.get_render_buffer_caps. They can't if enum
wlr_buffer_cap isn't made public.
We never create an EGL context with the platform set to something
other than EGL_PLATFORM_GBM_KHR. Let's simplify wlr_egl_create by
taking a DRM FD instead of a (platform, remote_display) tuple.
This hides the internal details of creating an EGL context for a
specific device. This will allow us to transparently use the device
platform [1] when the time comes.
[1]: https://github.com/swaywm/wlroots/pull/2671
The wlr_egl functions are mostly used internally by the GLES2
renderer. Let's reduce our API surface a bit by hiding them. If
there are good use-cases for one of these, we can always make them
public again.
The functions mutating the current EGL context are not made private
because e.g. Wayfire uses them.
Add wlr_pixman_buffer_get_current_image for wlr_pixman_renderer.
Add wlr_gles2_buffer_get_current_fbo for wlr_gles2_renderer.
Allow get the FBO/pixman_image_t, the compositor can be add some
action for FBO(for eg, attach a depth buffer), or without pixman
render to pixman_image_t(for eg, use QPainter of Qt instead of pixman).
The types of buffers supported by the renderer might depend on the
renderer's instance. For instance, a renderer might only support
DMA-BUFs if the necessary EGL extensions are available.
Pass the wlr_renderer to get_buffer_caps so that the renderer can
perform such checks.
Fixes: 982498fab3 ("render: introduce renderer_get_render_buffer_caps")
When importing a DMA-BUF wlr_buffer as a wlr_texture, the GLES2
renderer caches the result, in case the buffer is used for texturing
again in the future. When the wlr_texture is destroyed by the caller,
the wlr_buffer is unref'ed, but the wlr_gles2_texture is kept around.
This is fine because wlr_gles2_texture listens for wlr_buffer's destroy
event to avoid any use-after-free.
However, with this logic wlr_texture_destroy doesn't "really" destroy
the wlr_gles2_texture. It just decrements the wlr_buffer ref'count.
Each wlr_texture_destroy call must have a matching prior
wlr_texture_create_from_buffer call or the ref'counting will go south.
Wehn destroying the renderer, we don't want to decrement any wlr_buffer
ref'count. Instead, we want to go through any cached wlr_gles2_texture
and destroy our GL state. So instead of calling wlr_texture_destroy, we
need to call our internal gles2_texture_destroy function.
Closes: https://github.com/swaywm/wlroots/issues/2941
Make it so wlr_gles2_texture is ref'counted (via wlr_buffer). This
is similar to wlr_gles2_buffer or wlr_drm_fb work.
When creating a wlr_texture from a wlr_buffer, first check if we
already have a texture for the buffer. If so, increase the
wlr_buffer ref'count and make sure any changes made by an external
process are made visible (by invalidating the texture).
When destroying a wlr_texture created from a wlr_buffer, decrease
the ref'count, but keep the wlr_texture around in case the caller
uses it again. When the wlr_buffer is destroyed, cleanup the
wlr_texture.
Make it clear GLES2 is being used. Before this commit, various
GL-related information was printed, but not an easy-to-find line
about which renderer is being picked up.
The compositor shouldn't write to client buffers if the client
attaches a DMA-BUF to a wl_surface, then attaches a shm buffer.
Make gles2_texture_write_pixels return an error to prevent this
from happening.
PRIME support for buffer sharing has become mandatory since the renderer
rewrite. Make sure we check for the appropriate capabilities in backend,
allocator and renderer.
See also #2819.
Compute only the transform matrix in the output. The projection matrix
will be calculated inside the gles2 renderer when we start rendering.
The goal is to help the pixman rendering process.
Mesa provides YUV shaders, and can import multi-planar YUV DMA-BUFs
as a single EGLImage. Remove the arbitrary limitation.
If the driver doesn't support importing YUV as a single EGLImage,
the import will fail and the result will be the same anyways.
Clamping texture coordinates prevents OpenGL from blending the left and
right edge (or top and bottom edge) when scaling textures with GL_LINEAR
filtering. This prevents visual artifacts like swaywm/sway#5809.
Per discussion on IRC, this behaviour is made default. Compositors that want
the wrapping behaviour (e.g. for tiled patterns) can override this by doing:
struct wlr_gles2_texture_attribs attribs;
wlr_gles2_texture_get_attribs(texture, &attribs);
glBindTexture(attribs.target, attribs.tex);
glTexParameteri(attribs.target, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(attribs.target, GL_TEXTURE_WRAP_T, GL_REPEAT);
glBindTexture(attribs.target, 0);
Instead of requiring callers to manually make the EGL context current
before binding a buffer and unsetting it after unbinding a buffer, do
it inside wlr_renderer_bind_buffer.
This hides renderer-specific implementation details inside the
wlr_renderer interface. Non-GLES2 renderers may not use EGL.
This removes all EGL dependencies from the backends.
References: https://github.com/swaywm/wlroots/issues/2618
References: https://github.com/swaywm/wlroots/pull/2615#issuecomment-756687006