This lets the renderer handle the wlr_buffer directly, just like it
does in texture_from_buffer. This also allows the renderer to batch
the rectangle updates, and update more than the damage region if
desirable (e.g. too many rects), so can be more efficient.
We were firing the new_input signal on backend initialization,
before the compositor had the chance to add a listener for it.
Mimick what's done for wl_keyboard: if the backend hasn't been
started, delay wl_touch initialization.
Closes: https://gitlab.freedesktop.org/wlroots/wlroots/-/issues/3473
When the client doesn't support high-resolution scroll, accumulate
deltas until we can notify a discrete event.
Some mice have a free spinning wheel, making possible to lock the wheel
when the accumulator value is not 0. To avoid synchronization issues
between the mouse wheel and the accumulators, store the last delta and
when the scroll direction changes, reset the accumulator.
On newer versions of libinput, the event LIBINPUT_EVENT_POINTER_AXIS
has been deprecated in favour of LIBINPUT_EVENT_POINTER_SCROLL_WHEEL,
LIBINPUT_EVENT_POINTER_SCROLL_FINGER and
LIBINPUT_EVENT_POINTER_SCROLL_CONTINUOUS.
Where new events are provided by the backend, ignore
LIBINPUT_EVENT_POINTER_AXIS, receive high-resolution scroll events from
libinput and emit the appropiate wlr_pointer signal.
Currently, the "wlr_event_pointer_axis" event stores low-resolution
values in its "delta_discrete" field. Low-resolution values are always
multiples of one, i.e., 1 for one wheel detent, 2 for two wheel
detents, etc.
In order to simplify internal handling of events, always transform in
the backend from the low-resolution value into the high-resolution
value.
The transformation is performed by multiplying by 120. The 120 magic
number is used by the kernel and it is exposed to clients in the
"WLR_POINTER_AXIS_DISCRETE_STEP" constant.
wlr_xdg_surface_from_wlr_surface() for example may return NULL even if
the surface has the xdg surface role if the corresponding xdg surface
has been destroyed.
"max bpc" is a maximum value, the driver is free to choose a
smaller value depending on the bandwidth available.
Some faulty monitors misbehave with higher bpc values. We'll add
a workaround if users get hit by these in practice.
References: https://gitlab.freedesktop.org/wayland/weston/-/issues/612
Whether a texture is opaque or not doesn't depend on the renderer
at all, it just depends on the source buffer. Instead of forcing
all renderers to implement wlr_texture_impl.is_opaque, let's move
this in common code and use the wlr_buffer format to know whether
a texture will be opaque.
This refactors output_ensure_buffer() to not mutate the state passed,
making the previous subtle behavior much more explicit.
Fixes: d483dd2f ("output: add wlr_output_commit_state")
Closes: #3442
CTA-861-G says that "graphics" is used to indicate non-analog (ie,
digital) content. With that bit set, the sink should turn off analog
reconstruction and other related filtering.
This commit ensures that outputs that weren't created by the output
layout helper aren't destroyed on the output layout change.
Consider the following piece of logic:
// struct wlr_output *o1, *o2;
// struct wlr_scene *scene;
// struct wlr_output_layout *layout;
wlr_scene_attach_output_layout(scene, layout);
wlr_output_layout_add_auto(layout, o1);
struct wlr_scene_output *so2 = wlr_scene_output_create(scene, o2);
wlr_output_layout_move(layout, o1, 100, 200);
// so2 is invalid now
Now that the DRM backend no longer depends on GBM, we can make it
optional. The GLES2 renderer still depends on it because of our EGL
device selection.
This is useful for compositors with their own renderers, and for
compositors using the Vulkan renderer.